首页|冬小麦需水量的预测模型对比分析

冬小麦需水量的预测模型对比分析

扫码查看
[目的]构建冬小麦需水量预测模型,提高需水量预测的精准度,为基于气象信息的需水量预测提供更为可靠的方法。[方法]选取新疆奇台县近5年的气象数据,采用公式Penman-Monteith计算冬小麦需水量(近似为真实需水量),基于CNN-BiLSTM模型,将平均温度、风速、湿度和降水量4个变量作为输入参数,预测冬小麦需水量,对比评估预测CNN-BiLSTM与LSTM、BiLSTM等6种模型的精准性。[结果]采用少量参数分别输入BP、RNN、LSTM、改进的 BiLSTM和CNN-BiLSTM等模型中预测需水量,BP神经网络的预测效果较差。在模型评估中,CNN-BiLSTM比LSTM的R2提高约8%,MSE降低约0。56。[结论]CNN-BiLSTM模型对小麦需水量预测更加精准。
Forecasting method of water requirement of winter wheat
[Objective]Based on the meteorological data related to water demand forecasting of winter wheat,a water demand forecasting model with fewer parameters was constructed to improve the robustness of water demand forecasting,provides a more reliable method for forecasting water demand based on meteorologi-cal information.[Methods]Meteorological data of Qitai County in recent five years were selected,and the wa-ter requirement of winter wheat calculated by Penman-Monteith formula was approximately the real water re-quirement.Four variables including average temperature,wind speed,humidity and precipitation were taken as input parameters.The water requirement of winter wheat was forecasted,and the prediction of CNN-BiL-STM was compared with that of LSTM,BiLSTM and other 6 models.[Results]The results showed that when a few parameters were fed into BP,RNN,LSTM,improved BiLSTM and CNN-BiLSTM models to predict wa-ter demand,the prediction effect of BP neural network was poor.In the model evaluation,CNN-BiLSTM showed an R2 improvement of about 14%over LSTM and a MSE reduction of about 3.8.[Conclusion]CNN-BiLSTM model is more accurate in predicting wheat water demand.

winter wheatwater demandforecastLSTMCNN-BiLSTM

杜云、张婧婧、雷嘉诚、李博、李永福

展开 >

新疆农业大学计算机与信息工程学院/智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052

新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091

冬小麦 需水量 预测 LSTM CNN-BiLSTM

新疆维吾尔自治区重大科技专项科技创新2030—"新一代人工智能"重大项目

2022A02011-22022ZD0115805

2024

新疆农业科学
新疆农业科学院 新疆农业大学 新疆农学会

新疆农业科学

CSTPCD北大核心
影响因子:0.698
ISSN:1001-4330
年,卷(期):2024.61(7)