首页|基于机器学习的模式温度预报订正方法

基于机器学习的模式温度预报订正方法

扫码查看
基于ECWMF模式数据(地面2m温度、10m风、降水等多气象要素预报产品)和安徽省80个国家气象站观测资料,利用决策树、随机森林、LightGBM三种机器学习算法订正ECMWF模式0~72h温度预报,并将其与传统MOS订正方法和主观预报产品进行对比分析.结果表明:ECMWF模式高温预报误差明显高于低温预报,在安徽皖南山区和大别山区存在较大的预报误差.随机森林对最高温度预报的表现最优,LightGBM对最低温度预报的表现最优,与ECMWF模式结果相比,预报准确率分别提高了18.16%和5.19%.高山站点融合周围站点信息的机器学习模型能有效降低高、低温的预报误差.机器学习在高温和寒潮天气过程中相比主观订正仍有良好表现,能显著优化或改善数值模式在转折天气中的温度预测精度.
Correction Method of Model Temperature Forecast Based on Machine Learning
Based on the ECWMF model forecast products(2 m temperature,10 m wind,precipitation,etc.)and the 2 m temperature historical observation data of 80 national meteorological stations in Anhui province,three machine learning algorithms,decision tree(DT),random forest(RF)and light gradient boosting machine(LightGBM),were utilized to correct ECMWF model forecast products of the daily maximum and minimum temperature with the lead time of 0-72 hours.The corrected temperature products were further compared with that corrected by model output statistics(MOS)method and the forecaster's subjective forecast products.The results show that:(1)The mean absolute error(MAE)of ECMWF daily maximum temperature forecast is obviously higher than that of minimum temperature,and MAE in mountainous area of Dabies and southern Anhui are large.(2)RF has the best performance in predicting daily maximum temperature and LightGBM in minimum temperature.Compared with the ECMWF model,the prediction accuracy has increased by 18.16%and 5.19%respectively.(3)The machine learning model fusing the surrounding stations information can effectively reduce the temperature forecast errors ofmountain meteorological stations.(4)Compared with the subjective correction,machine learning methods can significantly improve the temperature prediction accuracy of the numerical model in the transition weather,such as high temperature and cold wave.

ECWMFtemperature correctionmachine learningmountain meteorological stations

刘杰、刘高平、安晶晶、邱学兴、章颖

展开 >

淮河流域气象中心,安徽 合肥 230031

安徽省气象台,安徽 合肥 230031

ECMWF 温度订正 机器学习 高山站点

中国气象局创新发展专项安徽省气象局创新发展专项

CXFZ2022J001CXM202201

2024

沙漠与绿洲气象
新疆维吾尔自治区气象学会 中国气象局乌鲁木齐沙漠气象研究所

沙漠与绿洲气象

CSTPCD
影响因子:1.007
ISSN:1002-0799
年,卷(期):2024.18(3)