首页|CMIP6全球气候模式对中亚极端降水模拟能力的评估

CMIP6全球气候模式对中亚极端降水模拟能力的评估

扫码查看
基于NOAA再分析逐日降水数据和22个第六次国际耦合模式比较计划(CMIP6)全球气候模式的降水模拟数据,选取6个极端降水指数,从气候态和相对变率两个角度对CMIP6全球气候模式在中亚地区极端降水方面的模拟能力开展评估.结果表明:在气候态方面,中亚地区降水的空间分布表现为由西南向东北递增,其东南部山地迎风侧降水偏多;多模式集合对简单降水强度(SDII)和最大无雨期(CDD)模拟的平均误差分别为-5.43%和0.45%,对年总降水量(PRCPTOT)、有雨日数(R1mm)、最大连续5d降水(Rx5day)和最大雨期(CWD)的模拟结果存在明显高估,在中亚东南部高海拔地区误差偏高.在相对变率方面,多模式集合模拟的中亚极端降水的相对变率偏小,其中对最大雨期的模拟效果相对较好,平均误差为-4.78%;对有雨日数的模拟效果最差,平均误差为-36.16%.模式间进行比较,TaiESM1、EC-Earth3-Veg-LR和GFDL-ESM为22个CMIP6全球气候模式中模拟能力最好的前3个模式.
Assessment of CMIP6 in Simulating Extreme Precipitation over Central Asia
Based on observed precipitation data from the National Oceanic and Atmospheric Administration(NOAA)reanalysis and simulated precipitation data from 22 Coupled Model Intercomparison Project Phase 6(CMIP6)global climate models(GCMs),six extreme daily precipitation indices are selected to evaluate the performance of the CMIP6 GCMs over the central Asia from the perspectives of climatological mean and temporal variability.The results indicate that the spatial distribution of the climatological mean extreme precipitation shows an increasing trend from the southwest to the northeast,with high values occurring on the windward side of the southeast mountainous areas.The average errors of the CMIP6 multi-model ensemble(MME)for simple precipitation intensity index(SDII)and Consecutive dry days(CDD)are only-5.43%and 0.45%,but there are significant overestimations of the simulated annual total precipitation(PRCPTOT),annual count of days when precipitation 1mm(R1mm),maximum precipitation for 5 consecutive days(Rx5day)and consecutive wet days(CWD),while the corresponding errors are large over the southeastern part at higher altitudes.By comparison,the relative variability of the CMIP6 MME is relatively low,while the simulated CWD exhibits a relatively good performance,with an average error of-4.78%.R1mm is not well simulated,with an average error of-36.16%.Finally,among 22 CMIP6 GCMs,TaiESM1,EC-Earth3-Veg-LR,and GFDL-ESM are the best three models.

CMIP6model assessmentextreme precipitation

薛白鹭、李娟、宋金杰

展开 >

中国气象科学研究院灾害天气国家重点实验室,北京 100081

南京信息工程大学大气科学学院,江苏 南京 210044

中国气象科学研究院南京气象科技创新研究院,江苏 南京 210044

CMIP6 模式评估 极端降水

国家重点研发计划"重大自然灾害"专项国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目

2018YFC150750342192554618279014217500741905001

2024

沙漠与绿洲气象
新疆维吾尔自治区气象学会 中国气象局乌鲁木齐沙漠气象研究所

沙漠与绿洲气象

CSTPCD
影响因子:1.007
ISSN:1002-0799
年,卷(期):2024.18(5)