首页|基于机器学习的复材装配制孔微损伤监测方法研究

基于机器学习的复材装配制孔微损伤监测方法研究

扫码查看
研究旨在开发一种基于机器学习的复合材料装配制孔微损伤监测方法,针对碳纤维增强复合材料(CFRP)在制孔加工过程中容易产生的分层损伤等问题,通过采集力学信号、声发射信号和温度信号方式,利用机器学习模型实现对碳纤维增强复合材料(CFRP)制孔微损伤的实时监控.研究内容包括理论研究、实验研究、信号处理、模型构建及监测系统设计等,从而形成一套基于工艺参数及刀具角度耦合约束下的复材制孔微损伤控制方法,并达到一定的技术指标,为后续研究指明了方向.
Research on Monitoring Method of Micro-damage in Composite Assembly Drilling Holes based on Machine Learning
Aimed to develop a composite material assembly hole micro-damage monitoring method based on machine learning.In view of the problems of delamination damages which were easily caused during the process of drilling holes in carbon fiber reinforced composite materials(CFRP),it was collected that mechanical signals,acoustic emission signals,and temperature signals,and machine learning models were used to achieve real-time monitoring of micro-damage in the drilling process of carbon fiber reinforced composite materials(CFRP).The research contents included theoretical research,experi-mental research,signal processing,model construction,monitoring system design and so on,so as to form a set of compos-ite material micro-damage control methods based on process parameters and tool angle coupling constraints.It achieved cer-tain technical indicators,and pointed out the direction for future research.

carbon fiber reinforced composite materials(CFRP)micro-damage monitoring during drilling holesma-chine learningdamage suppression methodsneural networkgenetic algorithm

乐洪博、王宇宁、谢大叶

展开 >

空装驻沈阳局驻沈阳地区第一军事代表室,辽宁 沈阳 110850

航空工业沈阳飞机工业(集团)有限公司 工程技术中心,辽宁 沈阳 110850

碳纤维增强复合材料(CFRP) 制孔微损伤监测 机器学习 损伤抑制方法 神经网络 遗传算法

2024

新技术新工艺
中国兵器工业新技术推广研究所

新技术新工艺

影响因子:0.294
ISSN:1003-5311
年,卷(期):2024.440(8)
  • 10