首页|基于Grad-CAM的校园街道步行空间视觉感知体验研究

基于Grad-CAM的校园街道步行空间视觉感知体验研究

扫码查看
相较于城市街道,校园中更为简单的人群结构和低差异性的空间,提供了相对严格的控制变量条件和可重复性更高的实验环境,有助于更专注地分析特定的校园街景要素对视觉感知的影响.文章采用类激活可视化解释技术(Grad-CAM),对南方某大学的校园街道步行空间视觉感知体验进行研究.通过对比Grad-CAM类激活图与眼动追踪数据,并结合SHAP模型和核密度估计模型分析,归纳了影响校园街道空间步行感知的主要街道特征,揭示了街景要素对视觉感知的差异化影响.研究可为街道步行空间的精细化设计和更复杂的城市街道研究提供参考和借鉴.
Visual Perception Experience of Campus Street Walking Space Based on Gradient-weighted Class Activation Mapping
This study focuses on the pedestrian spaces of campus streets at a university in southern China,utilizing Gradient-weighted Class Activation Mapping(Grad-CAM)to explore pedestrian visual perception experiences.Grad-CAM intuitively highlights key areas in street images that affect pedestrian comfort,automatically identifying and emphasizing visual elements such as vegetation and vehicles,and revealing their impact on the pedestrian experience and visual perception.By comparing Grad-CAM activation maps with eye-tracking data,and incorporating analyses from SHAP and kernel density estimation models,the study summarizes the main street characteristics that shape pedestrian perception,and uncovers the diverse effects of streetscape elements on visual perception.This study provides architects with an analytical method that is easy to understand and apply for the refined design of campus pedestrian spaces.

campus street spacestreet walkabilityvisual perceptual experiencedeep learningClass Activation Mappinginterpretability

李韵琴、张嘉新、谢雨辰

展开 >

南昌大学建筑与设计学院,南昌大学城乡发展与产业创新研究院(南昌,330047)

香港大学社会科学学院地理系(香港特别行政区)

校园街道空间 街道步行性 视觉感知体验 深度学习 类激活图 可解释性

2024

新建筑
华中科技大学

新建筑

影响因子:0.427
ISSN:1000-3959
年,卷(期):2024.(6)