首页|基因型特征提取方法影响基因组选择预测准确性的研究

基因型特征提取方法影响基因组选择预测准确性的研究

扫码查看
旨在探索并评估6种不同的单核苷多态性(single nucleotide polymorphisms,SNP)基因型特征提取方法.本研究分析比较了 6种方法:主成分分析(principal component analysis,PCA)、基因主成分分析(gene-principal component analysis,gene-PCA)、SNP 位点间皮尔逊相关系数(SNP-pearson correlation coefficient,SNP-PCC)、连锁不平衡(linkage disequilibrium,LD)、全基因组关联分析(genome-wide association study,GWAS)和随机抽样(random sampling,RS),在两组数据(北京鸭,542个样本,SNP位点数39 932;杜洛克猪,2 549个样本,SNP位点数230 884)3组表型(北京鸭体长(body length)、杜洛克猪背膘厚(backfat thickness)和乳头数(teat number))上的GEBV 预测准确率.发现 SNP-PCC 结合 5 种 GS 方法(GBLUP、BayesA、BayesB、BayesC、Bayesian Lasso),在北京鸭数据获得相对可靠的预测精度,在猪背膘厚和乳头数表型获得最高平均预测准确性(提升5%,达到32.3%),并显著提升计算效率(平均提升5~7倍).综上,本研究发现选择合适的特征提取方法可以有效提升GS的预测准确性和计算效率,为深入研究不同特征提取方法对GS预测准确性的影响奠定了基础,并为其在育种实践中应用提供了参考.
Methods of Genotype Feature Extraction Affecting the Prediction Accuracy of Genomic Selection
The purpose of this study was to explore and evaluate 6 different methods for extrac-ting genotype feature of single nucleotide polymorphisms(SNP).Six methods were analyzed and compared:principal component analysis(PCA),gene-principal component analysis(gene-PCA),SNP-Pearson correlation coefficient(SNP-PCC),linkage disequilibrium(LD),and genome-wide association study(GWAS)and random sampling(RS).The prediction accuracy of GEBV in 2 sets of data(Beijing duck,542 samples,SNP loci 39 932;Duroc pig,2 549 samples,SNP loci 230 884)and 3 sets of phenotypes(Beijing duck body length,Duroc pig backfat thickness and teat number)was evaluated.Results showed that SNP-PCC combined with 5 GS methods(GB-LUP,BayesA,BayesB,BayesC,and Bayesian Lasso)achieved relatively reliable prediction accu-racy for the Pecking duck body length phenotype and achieved the highest average prediction ac-curacy in pig backfat thickness and teat number phenotypes(increased by 5%,reaching 32.3%),and significantly improved computational efficiency(on average 5-7 times faster).In summary,this study found that selecting appropriate feature extraction methods can effectively improve the accuracy and computational efficiency of GS prediction,laying the foundation for in-depth re-search on the impact of different feature extraction methods on GS prediction accuracy,and pro-viding reference for their application in breeding practice.

genomic selectionfeature extractionprediction accuracy

吴华煊、杜志强

展开 >

长江大学动物科学技术学院,荆州 434025

基因组选择 特征提取 预测准确性

安徽省畜禽联合育种改良项目(2021-2025)

2024

畜牧兽医学报
中国畜牧兽医学会

畜牧兽医学报

CSTPCD北大核心
影响因子:0.729
ISSN:0366-6964
年,卷(期):2024.55(6)
  • 2