首页|基于低秩张量完备的电磁大数据标注补全算法

基于低秩张量完备的电磁大数据标注补全算法

扫码查看
全面、准确的电磁数据标注是电磁大数据智能分析的前提和基础。针对战场博弈强对抗条件下电磁感知数据存在的标注率低、标注信息错误冗余等问题,提出基于张量完备理论的标注补全方案。理论上,同一场景下的同一目标,利用不同感知平台观测提取的特征参数(如雷达脉冲参数)是相似(低秩)的,且在一段观测时间内的测量结果是分段连续光滑的。故跨平台接收的目标数据标注补全可以建模为基于低秩张量完备的特征复原模型,并引入全变分正则来刻画一段时间内特征参数的分段连续光滑属性。由于模型非凸,使用基于矩阵最大秩分解的非凸近似算法进行迭代求解。通过仿真数据以及雷达脉冲描述字实侦数据并对模型的性能进行测试。实验结果表明,所提方法在目标特征标注信息严重缺失的情况下能够很好地实现标注补全,同时具有一定的标注纠错功能。
A low-rank tensor completion based method for electromagnetic big data annotation recovery
Comprehensive and accurate labeling of electromagnetic data is the prerequisite and foundation for intelligent analysis of electromagnetic big data.Aiming at the problems of low labeling rate and error redundant labeling information in electromagnetic sensing data under the condition of strong confrontation in battlefield games,an annotation and completion scheme based on tensor completeness theory is proposed.Theoretically,the feature parameters(such as radar pulse parameters)extracted from the observation of the same target using different sensing platforms in the same scene are similar(low-rank),and the measurement results over a period of observation time are piece-wise continuous and smooth.Therefore,the annotation and completion of target data received across platforms can be modeled as a feature restoration model based on low rank tensor completeness,and total variation regularization is introduced to characterize the piece-wise continuous smooth attributes of feature parameters over a period of time.Because the model is non-convex,a non-convex approximation algorithm based on the maximum rank decomposition of the matrix is used for iterative solution.The performance of the model is tested through simulation data and radar pulse description word(PDW)real detection data.The experimental results show that the proposed method can well achieve annotation and completion in the case of severe lack of target feature annotation information,and correct annotation errors efficiently.

annotation and completionelectromagnetic big datalow-rank tensor completion

孙国敏、张伟、邵怀宗、方旖、李鹏飞

展开 >

电子科技大学信息与通信工程学院,四川成都 611731

电磁空间安全全国重点实验室,四川成都 610036

电磁空间认知与智能控制技术实验室,北京 100083

标注补全 电磁大数据 低秩矩阵恢复

国家自然科学基金

U20B2070

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(2)
  • 30