首页|基于多源遥感图像多级协同融合的舰船识别算法

基于多源遥感图像多级协同融合的舰船识别算法

扫码查看
针对极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像存在斑点噪声严重、可视性差、直接影响目标识别精度的问题,提出一种基于多源遥感图像多级协同融合的舰船识别算法。通过采用多级协同融合方式,丰富图像的特征量,提高舰船识别精度。所提方法首先进行多源遥感数据的像素级融合,然后在上一步基础上进行特征级融合,最终得到新的目标特征。所提方法充分发挥了不同频段的PolSAR与多光谱图像的信息互补优势,不仅保留了多频段PolSAR对目标的极化散射特征,也保留了多光谱数据的空-谱信息。所提方法在可视性与检测精度上表现都较为出色,与传统的单一遥感数据相比,识别精度至少提高了 5。12%。
Ship recognition algorithm based on multi-level collaborative fusion of multi-source remote sensing images
The problem of serious speckle noise and poor visibility in polarimetric synthetic aperture radar(PolSAR)directly affect the accuracy of target recognition.A ship recognition algorithm based on the multi-level cooperative fusion of multi-source remote sensing images is proposed.The method of multi-level cooperative fusion is adopted to enrich the image features and improve the accuracy of ship recognition.Firstly,the multi-source remote sensing data is fused at the pixel level.Then,the feature-level fusion is carried out on the basis of the previous step.Finally,new target features are obtained.This method gives full play to the information complementarity advantage of PolSAR and multispectral images in different frequency bands.This method retains the polarization scattering characteristics of the target in different frequency bands of PolSAR.Meantime,the spectral-spatial information of multispectral data is also retained.Compared with the traditional single remote sensing data,the proposed method performs better in visibility and detection accuracy.The recognition accuracy of the proposed method is improved by 5.12% at least.

polarimetric synthetic aperture radar(PolSAR)image fusionmultispectralship detection

张亚丽、冯伟、全英汇、邢孟道

展开 >

西安电子科技大学电子工程学院,陕西西安 710071

西安电子科技大学前沿交叉研究院,陕西西安 710071

极化合成孔径雷达 图像融合 多光谱 舰船检测

国家自然科学基金国家自然科学基金国家自然科学基金陕西林业科技创新重点专项陕西省自然科学基础研究计划榆林市科技局科技发展专项

622014386177239712005159SXLK2022-02-82021JC-23CXY-2020-094

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(2)
  • 46