首页|基于纯自注意力机制的毫米波雷达手势识别

基于纯自注意力机制的毫米波雷达手势识别

扫码查看
在构建智慧控制,万物互联的背景下,通过手势远程控制设备,进行人机交互逐渐成为研究热点。对此,提出了 一种以毫米波雷达为传感器,采用基于纯自注意力机制模型实现手势识别的方法。首先,采集正面视角的13类手势的时序回波数据。接着,对数据进行三维快速傅里叶变换(three-dimension fast Fourier transform,3D-FFT)、动目标显示(moving target indication,MTI)、恒虚警率(constant false alarm rate,CFAR)检测操作并进行固定种类特征提取,将这些特征传入基于纯自注意力机制网络的雷达特征变换(radar feature transformer,RFT)网络。最后,基于实测数据完成了数据特征提取、网络训练、手势识别等步骤。实验结果表明,所提方法在测试集上准确率达到95。38%,网络训练时间短,模型复杂度低,泛化性好,为现有研究提供了新的研究思路。
Gesture recognition based on millimeter-wave radar with pure self-attention mechanism
In the context of building intelligent control and the internet of everything,remote control of devices through hand gestures for human-computer interaction has gradually become a research hotspot.For this,a gesture recognition method based on pure self-attention mechanism model with millimeter-wave radar as sensor is proposed.Firstly,the time sequence echo data of 13 kinds of gestures from the front-view direction is collected.Then,three-dimension fast Fourier transform(3D-FFT),moving target indication(MTI)and constant false alarm rate(CFAR)detector operations are carried out on the data and fixed type Feature extraction.These features are introduced into radar feature transformer(RFT)based network.Finally,based on the measured data,the steps of data feature extraction,network training,gesture recognition and so on are completed.The experimental results show that the accuracy rate of the proposed method in the test dataset is 95.38%.Moreover,it has the characteristics of short metwork training time,low model complexity and good generalization,which provides a new research idea for the existing research.

millimeter-wave radargesture recognitionself-attention mechanismnoise suppression

张春杰、王冠博、陈奇、邓志安

展开 >

哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001

先进船舶通信与信息技术工业和信息化部重点实验室,黑龙江哈尔滨 150001

毫米波雷达 手势识别 自注意力机制 噪声抑制

黑龙江省自然科学基金联合引导项目中央高校基本科研业务费基金

LH2020F0193072022TS0802

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(3)
  • 32