系统工程与电子技术2024,Vol.46Issue(3) :1021-1030.DOI:10.12305/j.issn.1001-506X.2024.03.28

无人机编队模糊约束分布式模型预测节能控制

Distributed model predictive energy-saving control of UAVs formation with fuzzy constraints

郝文康 陈琪锋
系统工程与电子技术2024,Vol.46Issue(3) :1021-1030.DOI:10.12305/j.issn.1001-506X.2024.03.28

无人机编队模糊约束分布式模型预测节能控制

Distributed model predictive energy-saving control of UAVs formation with fuzzy constraints

郝文康 1陈琪锋1
扫码查看

作者信息

  • 1. 中南大学自动化学院,湖南长沙 410083
  • 折叠

摘要

针对无人机(unmanned aerial vehicles,UAVs)在编队形成过程中节省能量的问题,提出一种具有模糊约束的分布式模型预测控制算法.首先,用模糊数学理论把僚机相对长机的状态误差空间划分成多个模糊集,根据各僚机的状态误差设计速度和航向角指令的模糊约束;其次,把各僚机相对长机的模糊约束作为 自身在分布式模型预测控制算法中的约束条件,以降低速度和航向角的变化幅度,使UAV在编队控制中节省能量;最后,与无模糊约束的分布式模型预测控制算法对比仿真.统计结果表明,该方法可缩减飞行路程、减小速度与航向角的变化累计值,起到节省能量的效果.

Abstract

A distributed model predictive control algorithm with fuzzy constraints is proposed to solve the problem of energy saving in the formation of unmanned aerial vehicles(UAVs).Firstly,the state error space of the wingman relative to the leader is divided into multiple fuzzy sets by using the fuzzy mathematics theory,and the fuzzy constraints of speed and yaw angle commands are designed according to the state errors of each wingman.Secondly,the fuzzy constraints of each wingman relative to the leader are taken as its own constraints in the distributed model predictive control algorithm.By reducing the variation range of speed and yaw angle,the UAV can save energy in formation control.Finally,the proposed algorithm is verified by simulation through compared with the distributed model predictive control algorithm without fuzzy constraints.The statistical results show that this method can shorten the flight distance,reduce the cumulative value of speed and yaw angle change,and has the effect of saving energy.

关键词

无人机编队/分布式/模糊理论/模型预测控制/节能

Key words

unmanned aerial vehicles(UAVs)formation/distributed/fuzzy theory/model predictive control/energy-saving

引用本文复制引用

出版年

2024
系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
参考文献量30
段落导航相关论文