首页|基于迁移学习的室内波束选择优化方法

基于迁移学习的室内波束选择优化方法

扫码查看
使用基于深度学习的室内波束选择方法可以显著提高波束匹配概率和搜索效率,但该方法需要大型数据集来调整其大量可训练参数,导致了额外的系统开销。针对这一不足,结合一种迁移学习技术,使得 目标场景神经网络以小数据集方式获得与大数据集相近的匹配精度,从而减小基于深度学习的波束选择方法中数据集大小对匹配结果产生的影响。首先使用大型数据集在一个源场景中对源神经网络进行充分训练,使得网络参数能够充分包含信道状态信息以及环境信息;而后利用源神经网络参数对目标场景中的神经网络进行不同程度初始化,使该神经网络在经过小数据集训练后依然可以获得较好的波束匹配性能。仿真结果表明,针对室内波束选择场景,在数据集有限的情况下,使用迁移学习方法进行波束选择,同样可以获得较高的匹配精度。
Optimization method of indoor beam selection based on transfer learning
Indoor beam selection method based on depth learning can significantly improve the beam matching probability and search efficiency,but this method requires large data sets to adjust a large number of trainable parameters,which leads to additional system overhead.To solve this problem,a migration learning technology is combined to enable the target scene neural network to obtain matching accuracy similar to that of large data sets in the form of small data sets,thus reducing the impact of data set size on the matching results in the beam selection method based on depth learning.Firstly,a large dataset is used to fully train the source neural network in a source scene,so that the network parameters can fully contain the channel state information and environment information.Then,the source neural network parameters are used to initialize the neural network in the target scene to varying degrees,so that the neural network can still obtain good beam matching performance after being trained in a small dataset.The simulation results show that for indoor beam selection scenarios,in the case of limited data sets,using the migration learning method for beam selection can also achieve high matching accuracy.

millimeter waveindoor environmentbeam searchtransfer learning

王俊智、仲伟志、肖丽君、王鑫、朱秋明、林志鹏

展开 >

南京航空航天大学航天学院,江苏南京 210016

南京航空航天大学电子信息工程学院,江苏南京 210016

毫米波 室内环境 波束搜索 迁移学习

国家自然科学基金面上项目江苏省重点研发计划(产业前瞻与关键核心技术)江苏省重点研发计划(产业前瞻与关键核心技术)江苏省重点研发计划(产业前瞻与关键核心技术)

62271250BE2022067BE2022067-1BE2022067-3

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(3)
  • 19