首页|基于锚框自适应和多尺度增强的SAR舰船检测

基于锚框自适应和多尺度增强的SAR舰船检测

扫码查看
针对目前基于深度学习的合成孔径雷达(synthetic aperture radar,SAR)舰船检测锚框尺度固定、多尺度检测性能较差的问题,提出了一种基于锚框自适应和多尺度增强网络(adaptive anchor multi-scale enhance-ment network,AA-MSE-Net)的SAR舰船检测方法。首先,AA-MSE-Net引入了锚框自适应机制,来生成适应目标形态的高质量锚框,增强了舰船形态描述能力。其次,AA-MSE-Net提出了多尺度增强金字塔网络,来融合增强多尺度特征,增强了多尺度描述能力。最后,AA-MSE-Net在骨干网络中引入了可变形卷积,来提取舰船形变特征,进一步提高检测精度。实验证明,AA-MSE-Net在公开SAR舰船检测数据集上的平均精度高于8种对比方法。
SAR ship detection based on adaptive anchor and multi-scale enhancement
Aiming at the problem that the scales of synthetic aperture radar(SAR)ship detection anchors are fixed,and the performance of multi-scale detection is poor,a SAR ship detection method based on adaptive anchors multi-scale enhancement network(AA-MSE-Net)is proposed.Firstly,AA-MSE-Net introduces adaptive anchors mechanism to generate high quality anchors that adapt to the target shape,which enhances the ability to describe the target shape.Secondly,AA-MSE-Net proposes a multi-scale enhancement feature pyramid network to fusion enhanced multi-scale features,thus enhance the multi-scale description ability of the network.Finally,AA-MSE-Net introduces deformable convolution in the backbone to extract ship deformation features and further improve detection accuracy.Experiments show that the average precision of AA-MSE-Net on the public SAR ship detection dataset is higher than that of eight comparison methods.

synthetic aperture radar(SAR)ship detectionadaptive anchorscale enhancement

邵子康、张晓玲、张天文、曾天娇

展开 >

电子科技大学信息与通信工程学院,四川成都 611731

电子科技大学航空航天学院,四川成都 611731

合成孔径雷达 舰船检测 自适应锚框 尺度增强

国家自然科学基金

61571099

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(4)
  • 41