首页|基于联合GLMB滤波器的可分辨群目标跟踪

基于联合GLMB滤波器的可分辨群目标跟踪

扫码查看
针对联合广义标签多伯努利(joint generalized labeled multi-Bernoulli,J-GLMB)滤波算法中群目标之间距离较近、容易关联错误的问题,结合超图匹配(hypergraph matching,HGM)提出一种基于HGM-J-GLMB滤波器的可分辨群目标跟踪算法。首先,采用J-GLMB滤波器估计群内各目标的状态、数目及轨迹信息,并利用HGM结果提升量测与预测状态之间的关联性能。其次,通过图理论计算邻接矩阵,获取群结构信息和子群数目。随后,利用群结构信息估计协作噪声,进而校正目标的预测状态。最后,通过平滑算法改善滤波效果,并设置轨迹长度阈值,使其在平滑状态达到消除短轨迹的目的。仿真实验表明,所提算法在线性系统下能有效提升群目标跟踪性能。
Resolvable group target tracking based on joint GLMB filter
Aiming at the problem of association errors between group targets close to each other in the joint generalized labeled multi Bernoulli(J-GLMB)filtering algorithm,a resolvable group target tracking algorithm based on HGM-J-GLMB filter is proposed by combining hypergraph matching(HGM).Firstly,the J-GLMB filter is used to estimate the state,number,and trajectory information of each target in the group,and the HGM results are used to improve the correlation performance between measurement states and prediction states.Secondly,the adjacency matrix is calculated by graph theory to obtain group structure information and the number of subgroups.Subsequently,the collaborative noise is estimated by group structure information to correct the predicted state of the target.Finally,the filtering effect is improved through smoothing algorithms,and a trajectory length threshold is set to achieve the goal of eliminating short trajectories while maintaining a smooth state.Simulation experiment results show that the proposed algorithm can effectively improve the performance of group target tracking in linear systems.

multi-target trackingjoint generalized labeled multi-Bernoulli(J-GLMB)filterresolvable group targethypergraph matching(HGM)

齐美彬、庄硕、胡晶晶、杨艳芳、胡元奎

展开 >

合肥工业大学计算机与信息学院,安徽合肥 230009

合肥工业大学物理学院,安徽合肥 230009

中国电子科技集团第38研究所,安徽 合肥 230088

多目标跟踪 联合广义标签多伯努利滤波 可分辨群目标 超图匹配

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(4)
  • 31