系统工程与电子技术2024,Vol.46Issue(4) :1372-1382.DOI:10.12305/j.issn.1001-506X.2024.04.26

带有神经网络干扰观测器的视线角约束制导

Line-of-sight angle constraint guidance with neural network interference observer

何通 卢青 周军 郭宗易
系统工程与电子技术2024,Vol.46Issue(4) :1372-1382.DOI:10.12305/j.issn.1001-506X.2024.04.26

带有神经网络干扰观测器的视线角约束制导

Line-of-sight angle constraint guidance with neural network interference observer

何通 1卢青 1周军 1郭宗易1
扫码查看

作者信息

  • 1. 西北工业大学精确制导与控制研究所,陕西西安 710072
  • 折叠

摘要

针对具有终端视线(line-of-sight,LOS)角约束的机动目标拦截问题,提出一种基于径向基函数(radial basis function,RBF)神经网络干扰观测器的LOS角约束制导方法.首先,考虑目标机动过程中加速度信息无法获取的情况,给出了一种基于RBF神经网络的干扰观测器,实现了对目标机动的高精度估计;其次,充分考虑终端角度约束,结合超螺旋算法思想,通过幂次项的引入设计了一种改进的滑模制导律,从而有效提升了有限过载情况下的制导精度;在此基础上,通过Lyapunov定理对算法的收敛性和稳定性分别进行了证明;最后,通过仿真验证对比了 3种不同方法在4种拦截场景下的制导性能,同时针对所提方法进行了蒙特卡罗打靶仿真,仿真结果表明所给出的LOS角约束制导律对机动 目标拦截精度高、鲁棒性强.

Abstract

Aiming at the problem of maneuvering target interception with terminal line-of-sight(LOS)angle constraint,a LOS angle constraint guidance method based on radial basis function(RBF)neural network interference observer is proposed.Firstly,considering that the acceleration information cannot be obtained during target maneuvering process,an interference observer based on RBF neural network is presented,which realizes high-precision estimation of target maneuvering.Secondly,an improved sliding mold guidance law is designed by introducing the power term by fully considering the terminal angle constraint and combining the idea of super-twisting algorithm,so as to effectively improve the guidance accuracy under limited overload conditions.On this basis,the convergence and stability of the algorithm are proved by Lyapunov's theorem.Finally,the guidance performance of three different methods in four interception scenarios is compared through simulation verification,and Monte Carlo simulation is given for the proposed method,and the simulation results show that the LOS angle constraint guidance law given in this paper has high accuracy and strong robustness for maneuvering target interception.

关键词

改进滑模制导律/视线角约束/径向基函数神经网络/干扰观测器

Key words

improved sliding mold guidance law/line-of-sight(LOS)angle constraint/radial basis function(RBF)neural networks/interference observers

引用本文复制引用

基金项目

国家自然科学基金(92271109)

国家自然科学基金(52272404)

出版年

2024
系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
参考文献量37
段落导航相关论文