首页|多智能体博弈学习研究进展

多智能体博弈学习研究进展

扫码查看
随着深度学习和强化学习而来的人工智能新浪潮,为智能体从感知输入到行动决策输出提供了"端到端"解决方案.多智能体学习是研究智能博弈对抗的前沿课题,面临着对抗性环境、非平稳对手、不完全信息和不确定行动等诸多难题与挑战.本文从博弈论视角入手,首先给出了多智能体学习系统组成,进行了多智能体学习概述,简要介绍了各类多智能体学习研究方法.其次,围绕多智能体博弈学习框架,介绍了多智能体博弈基础模型及元博弈模型,均衡解概念和博弈动力学,学习目标多样、环境(对手)非平稳、均衡难解且易变等挑战.再次,全面梳理了多智能体博弈策略学习方法,离线博弈策略学习方法,在线博弈策略学习方法.最后,从智能体认知行为建模与协同、通用博弈策略学习方法和分布式博弈策略学习框架共3个方面探讨了多智能体学习的前沿研究方向.
Research progress of multi-agent learning in games
The new wave of artificial intelligence brought about by deep learning and reinforcement learning provides an"end-to-end"solution for agents from perception input to action decision-making output.Multi-agent learning is a frontier subject in the field of intelligent game confrontation,and it faces many problems and challenges such as adversarial environments,non-stationary opponents,incomplete information and uncertain actions.This paper starts from the perspective of game theory,firstly gives the organization of multi-agent learning system,gives an overview of multi-agent learning,and briefly introduces the classification of various multi-agent learning research methods.Secondly,based on the multi-agent learning framework in games,it introduces the basic multi-agent game and meta-game models,game solution concepts and game dynamics,as well as challenges such as diverse learning objectives,non-stationary environment(opponent),and equilibrium hard to compute and easy to transfer.Then comprehensively sort out the multi-agent game strategy learning methods,offline game strategy learning methods and online game strategy learning methods.Finally,some frontiers of multi-agent learning are discussed from three aspects of agent cognitive behavior modelling and collaboration,general game strategy learning methods,and distributed game strategy learning framework.

learning in gamesmulti-agent learningmeta-gameonline no regret learning

罗俊仁、张万鹏、苏炯铭、袁唯淋、陈璟

展开 >

国防科技大学智能科学学院,湖南长沙 410073

博弈学习 多智能体学习 元博弈 在线无悔学习

国家自然科学基金湖南省研究生科研创新项目

61806212CX20210011

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(5)
  • 334