首页|基于CL-RRT与MPC的舰载机牵引系统路径规划

基于CL-RRT与MPC的舰载机牵引系统路径规划

扫码查看
针对舰载机在甲板狭小、复杂环境下的调运过程,结合闭环快速随机搜索树(close loop rapidly exploring random trees,CL-RRT)和模型预测控制(model predictive control,MPC)提出一种舰载机牵引系统的路径规划算法.首先,在CL-RRT中采用纯追踪器与线性二次型(linear quadratic,LQ)控制器得到系统的控制输入并向前仿真得到规划路径.其次,将已得路径进行等比缩放与插值作为MPC的初始解.最后,设置MPC的目标函数等并解得最终路径.展开自定义三个场景下的仿真实验,通过与CL-RRT算法的实验结果进行比较,验证本文算法的优越性.实验结果表明,所提算法可有效解决因采样随机性带来解质量不佳的问题,提升舰载机在甲板上的调运效率与安全性.
Path planning of carrier aircraft traction system based on CL-RRT and MPC
The transport process of carrier aircraft is difficult because the environment of deck is narrow and complex.A path planning algorithm for the carrier aircraft traction system is proposed combining close loop rapidly exploring random trees(CL-RRT)and model predictive control(MPC).Firstly,the pure pursuit controller and linear quadratic(LQ)controller are used in CL-RRT to obtain the control input of the system,and the planned path is obtained by forward simulation.Secondly,the obtained path is scaled and interpolated as the initial solution of MPC.Finally,the objective function and so on of MPC is set and the final path is solved.The simulation experiment of three customized scenarios is carried out to verify the superiority of the proposed algorithm by comparing with the experimental results of CL-RRT algorithm.Experimental results show that the proposed algorithm can effectively solve the problem of poor solution quality caused by randomness of sampling,and improve the efficiency and safety of carrier aircraft on deck.

carrier aircraft traction systemclose loop rapidly exploring random trees(CL-RRT)model predictive control(MPC)path planning

孙家玮、余明晖、杨大鹏、汤皓泉、卞大鹏

展开 >

华中科技大学人工智能与自动化学院,湖北武汉 430074

中国舰船研究设计中心,湖北武汉 430064

海军装备部驻武汉地区第二军事代表室,湖北武汉 430064

舰载机牵引系统 闭环快速随机搜索树 模型预测控制 路径规划

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(5)
  • 30