首页|基于DTCWT-VAE的弹道中段目标RCS识别

基于DTCWT-VAE的弹道中段目标RCS识别

扫码查看
针对弹道目标雷达信号易受环境影响、目标识别准确率低的问题,提出了一种基于双树复小波变换(dual-tree complex wavelet transform,DTCWT)和变分自编码器(variational autoencoder,VAE)的弹道目标雷达散射截面(radar cross section,RCS)识别法。首先,采用DTCWT对弹道目标RCS动态数据进行预处理,再利用VAE提取目标的隐变量特征,最后用支持向量机(support vector machine,SVM)分类器进行识别。实验结果表明,与已有方法相比,该方法具有更高的识别概率,且鲁棒性较好。
Ballistic midcourse target RCS recognition based on DTCWT-VAE
Aiming at the problem that the radar signal of ballistic target is easily affected by the environment and the target recognition accuracy is low,a radar cross section(RCS)recognition method of ballistic target based on dual-tree complex wavelet transform(DTCWT)and variational autoencoder(VAE)is proposed.Firstly,the dynamic datas of ballistic target RCS are preprocessed by DTCWT.Then,the hidden variable features of target are extracted by VAE.Finally,the support vector machine(SVM)classifier is used to identify the data.Experimental results show that compared with the existing methods,the proposed method has higher recognition probability and better robustness.

ballistic targettarget recognitionradar cross section(RCS)dual-tree complex wavelet transform(DTCWT)variational autoencoder(VAE)

王彩云、张慧雯、王佳宁、吴钇达、常韵

展开 >

南京航空航天大学航天学院,江苏南京 211106

北京电子工程总体研究所,北京 100854

弹道目标 目标识别 雷达散射截面 双树复小波变换 变分自编码器

国家自然科学基金国家留学基金

61301211201906835017

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(7)