首页|基于差分窗口生成式对抗网络的空战态势评估

基于差分窗口生成式对抗网络的空战态势评估

扫码查看
针对飞机在空战中采集的飞行参数数据成分复杂、标签存在缺失等问题,提出一种基于生成式对抗网络(generative adversarial network,GAN)的半监督空战态势评估模型。首先根据各要素权重提取空战数据的主要影响因子,随后进行差分化和窗口化处理,利用差分方法将态势信息相对化为一维特征向量,窗口化信息生成反映两架载机态势信息的特征矩阵,并送入网络进行半监督训练。仿真结果表明,该模型在样本标签缺失的情况下具有良好的态势分析效果,对于4种态势的识别准确率达90。91%。
Air combat situation assessment based on differential window generative adversarial network
Aiming at the complex composition and missing tags of the flight reference data collected by the aircraft during the air combat,a semi-supervised air combat situation assessment model is proposed based on the generative adversarial network(GAN).Firstly,the main influencing factors of the air combat data are extracted according to the weights of each element,then the differencing and windowing processing are carried out.The situation information is relativeized into a one-dimensional feature vector using the differential method.The windowing information generates a feature matrix reflecting the situation information of the two carrier aircrafts,which is sent to the network for semi-supervised training.Simulation results show that the model has a good situation analysis effect in the case of sample labels missing,and the recognition accuracy of the four situations is 90.91%.

situation assessmentsemi-supervised learningdifferential windowgenerative adversarial network(GAN)

方伟、张婷婷、谭凯文、汤淼

展开 >

海军航空大学,山东烟台 264001

海战场信息感知与融合技术国家级实验教学中心,山东烟台 264001

态势评估 半监督学习 差分窗口 生成式对抗网络

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(8)