首页|基于Tri-feature训练的目标与海杂波鉴别算法

基于Tri-feature训练的目标与海杂波鉴别算法

扫码查看
针对海杂波背景下末制导雷达容易出现错误检测的问题,开展海杂波抑制和鉴别研究。采用基于Tri-feature训练的目标鉴别分类算法,以目标幅度、峰值持续范围和起伏率作为特征量,核函数选择径向基函数(radial basis function,RBF)。RBF非线性映射能力强,在高维空间中可以更好地表达数据之间的关系,然后进行支撑向量机(support vector machine,SVM)目标鉴别分类器设计和实验数据验证。经公开的实测数据验证,所提算法准确率达到97%以上。通过与传统的模板匹配识别方法进行对比,基于Tri-feature训练的目标鉴别分类算法有更高的鉴别准确率,证明了所提方法的有效性和先进性。
Target and sea clutter identification algorithm based on Tri-feature training
Focusing on the issue of error detection in terminal guidance radar under sea clutter background,research on sea clutter suppression and discrimination is conducted.The target identification and classification algorithm based on Tri-feature training is adopted,and the target amplitude,peak duration range and fluctuation rate are used as feature quantities.The radial basis function(RBF)is selected as the kernel function,which has strong nonlinear mapping ability and can better represent the relationship between data in high-dimensional space.Then,the support vector machine(SVM)target identification and classification classifier design and experimental data verification are carried out.Verified by publicly available measured data,the accuracy rate of the proposed algorithm has reached over 97%.Compared with the traditional template matching recognition method,the target identification and classification algorithm based on Tri-feature training has higher identification accuracy,which proves the effectiveness and progressiveness of the proposed method.

sea clutter suppressionterminal guidance radartarget classificationsupport vector machine(SVM)

吴巍、薛冰、刘丹丹

展开 >

海军工程大学兵器工程学院,湖北武汉 430032

海杂波抑制 末制导雷达 目标分类 支持向量机

国家自然科学基金

62073334

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(9)