首页|基于EfficientNet的多通道雷达目标微动特征分类方法

基于EfficientNet的多通道雷达目标微动特征分类方法

扫码查看
针对在低空雷达监视场景下,行人、车辆、无人机等目标分类任务中目标微动特征难以提取导致分类准确率较低的问题,提出一种基于EfficientNet的多通道雷达目标微动特征分类方法。首先,根据杂波、目标和噪声信号的能量分布差异,提出多能量奇异值分解方法抑制杂波和噪声,增强目标微动特征。随后,联合雷达和差通道时频信息特点,设计多通道EfficientNet模型,结合多通道微动特性进一步实现目标的准确分类。最后,利用雷达实测目标数据对所提方法进行验证。结果表明,所提方法在保证较低模型复杂度的情况下,相比于其他方法在准确率上有显著提升。
Multi-channel radar target micro-motion feature classification method based on EfficientNet
To solve the problem on low classification accuracy caused by the difficulty of extracting features of micro-motion targets,such as pedestrians,vehicles,and drones in low-altitude radar monitoring scenarios,a multi-channel radar target micro-motion feature classification method based on EfficientNet is proposed.Firstly,a multi-energy singular value decomposition method is proposed to suppress clutter and noise,and enhance the micro-motion characteristics of the target based on the energy distribution differences between the clutter,target,and noise signals.Secondly,the multi-channel EfficientNet model is designed to combine time-frequency information features in radar sum and difference channels,and further fuse multi-channel micro-motion features to achieve accurate target classification.Finally,the effectiveness of the proposed method is verified through experiments using radar measured target data.The results show that compared with other methods,the proposed method significantly improves classification accuracy with low model complexity.

multi-channel radarclassification of micro-motion targetsEfficientNetsingular value decomposition

王潇怡、罗运华、喻忠军、孙浩、王晓蓓

展开 >

中国科学院空天信息创新研究院,北京 100094

中国科学院大学电子电气与通信工程学院,北京 100049

多通道雷达 微动目标分类 EfficientNet 奇异值分解

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(9)