首页|基于GPR-UKF的天文测角/测速组合导航方法

基于GPR-UKF的天文测角/测速组合导航方法

扫码查看
在以太阳作为 目标源的天文测速导航中,多普勒速度量测量存在较多野值误差,严重影响导航精度。对此,提出一种基于高斯过程回归与无迹卡尔曼滤波(Gaussian process regression and unscented Kalman filte-ring,GPR-UKF)的野值检测修复方法,建立速度量测量的动态预测模型。此外,还针对不同参数对模型精度的影响进行研究。经仿真验证,所提方法效果显著优于传统野值处理方法。
Navigation method using angle/velocity measurement based on GPR-UKF
In astronomical velocity measurement navigation with the Sun as the target source,there are many outliers in Doppler velocity measurement,which seriously affects the accuracy of navigation.Thus,a outlier detection and repair method based on Gaussian process regression and unscented Kalman filtering(GPR-UKF)is proposed to establish a dynamic prediction model for velocity measurement.In addition,the impact of different parameters on the accuracy of the model is researched.Simulation verification test demonstrates that the proposed method has better performance than traditional outlier processing methods.

integrated navigationGaussian process regression(GPR)unscented Kalman filtering(UKF)solar Doppler velocitystarlight angle pitchoutlier processing

张寿健、桂明臻

展开 >

中南大学自动化学院,湖南长沙 410083

智慧地球重点实验室,北京 100029

组合导航 高斯过程回归 无迹卡尔曼滤波 太阳多普勒速度 星光角距 野值处理

2024

系统工程与电子技术
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会

系统工程与电子技术

CSTPCD北大核心
影响因子:0.847
ISSN:1001-506X
年,卷(期):2024.46(12)