首页|非凸非光滑半无限优化的混合型鲁棒对偶研究

非凸非光滑半无限优化的混合型鲁棒对偶研究

扫码查看
含有不确定信息的非凸非光滑半无限优化是不确定性优化领域的一类重要模型,在机器学习、信号处理等领域有着重要应用.文章旨在研究目标函数和约束函数均含有不确定性数据的非凸非光滑半无限优化问题.借助鲁棒优化方法,建立该不确定性优化问题的混合型鲁棒对偶问题.利用广义凸性假设条件和一类更弱的鲁棒型次微分约束规格条件,刻画该不确定性优化问题与其混合型鲁棒对偶问题之间的鲁棒弱对偶、鲁棒强对偶以及鲁棒逆对偶性质.
On Mixed Type Robust Duality for Nonconvex and Nonsmooth Semi-Infinite Optimization
Nonconvex and nonsmooth semi-infinite optimization with uncertainty is an important subclass of uncertain optimization fields due to its widely applications in machine learning,signal processing and other fields.This paper is devoted to consider a class of nonconvex and nonsmooth semi-infinite optimization problems with uncertain data appearing in both the objective functions and constraints.A mixed type robust dual problem for this uncertain optimization problem in terms of robust optimization methodology.The robust weak,strong and converse duality relations between them are obtained in terms of assumptions of generalized convexity and a new robust-type subdifferential constraint qualification.

Robust optimizationrobust dualitysemi-infinite optimization

郭晓乐、孙祥凯

展开 >

重庆工商大学数学与统计学院,重庆 400067

鲁棒优化 鲁棒对偶 半无限优化

国家自然科学基金重庆市自然科学基金面上项目重庆工商大学高层次人才科研启动基金

12001070cstc2021jcyjmsxmX11912156011

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(2)
  • 1
  • 20