首页|融合跳转关系和用户偏好的新闻热度预测

融合跳转关系和用户偏好的新闻热度预测

扫码查看
互联网时代的到来使新闻更新频率加快、传播范围更广,为了迅速控制不良信息、加强互联网信息治理,构建模型预测新闻未来热度具有重要意义.文章聚焦新闻间关系的挖掘,在适度融合用户偏好信息的前提下,提出了一种融合跳转关系和用户偏好的新闻热度预测方法.该方法首先结合新闻内容和历史跳转概率生成新闻跳转关系网络,并使用文章提出的多任务图卷积矩阵补全模型 MGCMC(multi-task graph convolutional matrix completion)对分布稀疏且不平衡的跳转概率矩阵进行预测,以获得未来的新闻跳转关系网络特征,当新闻平台推荐给用户一组处于传播状态的新闻时,结合用户个性化偏好预测其点击行为,最终获得新闻热度.基于真实用户-新闻交互数据集Mind的实验结果表明,MGCMC相比现有的矩阵补全和不平衡预测模型表现更佳,能更准确地预测用户-新闻点击行为,并更准确发现热度较高的新闻.
News Popularity Prediction Based on Jump Relationship and User Preference
The advent of the Internet era has accelerated the frequency of news updating and expanded the scope of news dissemination.It is dificult to mine and analyze the potential risk of news content only relying on manual work.Therefore,it is of great significance to build a model to predict the future popularity of news for a period of time to quickly control bad information and strengthen Internet information governance.In order to better predict the news popularity,this paper focuses on min-ing the relationship between news,and proposes a news popularity prediction method(that integrates the news jump relationship and user preference under the premise of moderately integrating user preference information).This method first combines the news content and the historical jump probability to generate the news jump relation-ship network,and uses the multi-task graph convolution matrix completion model MGCMC(multitask graph convolution matrix completion)proposed in this paper to predict the sparsely distributed and unbalanced jump probability matrix,so as to obtain the characteristics of the future news jump relationship network.When the news platform recommends a group of news in the state of dissemination to users,this method combines users'personalized preferences to predict their click behavior,and finally gains news popularity.The experimental results based on the real user-news interaction dataset Mind show that MGCMC performs better than the existing matrix completion and unbalanced prediction models,and the accuracy of user-news click prediction is higher,and the discovery of popular news is more accurate.

Graph neural networkmulti-task learningmatrix completionpopu-larity prediction

刘华玲、陈宁、任青青、钱珂佳

展开 >

上海对外经贸大学统计与信息学院,上海 201620

哥伦比亚大学工学院,纽约10027

图神经网络 多任务学习 矩阵补全 热度预测

国家社会科学基金重大项目

21ZDA105

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(3)
  • 29