首页|基于移动机器人的拣选系统货架动态储位分配研究

基于移动机器人的拣选系统货架动态储位分配研究

扫码查看
为了提高基于移动机器人的拣选系统拣货效率,更好地满足客户动态需求和订单时效要求,提出了考虑货架后续需求频次、需求紧迫程度以及拥堵因素的货架动态储位分配策略,构建了最小化货架搬运距离的动态储位分配模型,并设计了启发式算法进行模型求解.首先,基于货架需求紧迫程度,构造贪婪算法生成动态货架储位分配的初始解;然后,基于货架在后续批次订单的需求频次及通道间负载均衡,采用邻域搜索算法进行动态货架储位优化.最后,通过与其他静态和动态储位分配方法对比,验证文章提出的模型和算法的有效性.
Research on Dynamic Storage Allocation of Shelves in Robotic Mobile Fulfillment Systems
In order to improve the picking efficiency of robotic mobile fulfillment sys-tem(RMFS)and better meet the dynamic needs of customers and order deadlines,a dynamic shelf storage allocation strategy is proposed considering the frequency and urgency of future demand,as well as the system congestion factors.A dynamic storage allocation model is constructed to minimize the total distance of shelf transportation,and a heuristic algorithm is designed to solve the model.Firstly,considering the urgency of shelf demand,a greedy algorithm is designed to generate the initial solu-tion;Then,based on the frequency of demand for shelves in subsequent batches of orders and the load capacity balance among aisles,dynamic shelf storage optimiza-tion is carried out using neighborhood search algorithm.Finally,the effectiveness of the proposed model and algorithm is verified by comparison with other static and dynamic storage allocation methods.

RMFSintelligent warehousedynamic storage allocationheuristic al-gorithm

袁瑞萍、邹顺洁、潘路可、李俊韬、马西锋

展开 >

北京物资学院信息学院,北京 101149

智能物流系统北京市重点实验室,北京 101149

河南财经政法大学计算机与信息工程学院,郑州 450046

基于移动机器人的拣选系统 智能仓储 动态储位分配 启发式算法

国家自然科学基金北京市教委科技计划重点项目北京市通州区优秀科技创新团队项目河南财经政法大学华贸金融研究院项目(2021)

72101033KZ202210037046CXTD2023010HCHM-2021YB001

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(3)
  • 19