首页|具有L2正则项的新型离散多变量灰色预测模型

具有L2正则项的新型离散多变量灰色预测模型

扫码查看
MGM(1,m,N)模型存在参数非同源、模型结构简单、变量间易产生多重共线性三个问题.为解决模型不足,在MGM(1,m,N)模型中引入线性修正项和灰色作用量,以完善模型结构;利用导数一阶差分公式和递归法求解模型的时间响应式,以解决MGM(1,m,N)模型参数非同源性问题;为解决模型变量间多重共线性带来的不良影响,从减小参数估计量的方差角度出发,将L2正则项引入普通最小二乘估计中,并通过粒子群算法求解最优L2正则化参数.最后,将新型多变量灰色预测模型应用到中国三大主粮产量预测中.结果表明:新型多变量灰色预测模型从一定程度上解决了 MGM(1,m,N)模型在参数应用和模型结构方面存在的问题,有效解决了多重共线性对模型预测性能的影响,有效提高了 MGM(1,m,N)模型的预测精度.
A Novel Discrete Multivariate Grey Forecasting Model with L2 Regularization Term
The MGM(1,m,N)model has three problems:Non-homologous param-eters,simple model structure,and multicollinearity between variables.In order to solve this defects of MGM(1,m,N)model,the new structure MGM(1,m,N)is built,which modifies the model structure by introducing the linear correction term and the grey action term into the original model.In order to solve the defects in the pa-rameter application,using the derivative first-order difference formula and recursive method to solve the time response function of NSMGM(1,m,N)model.To address the adverse effects of multicollinearity,the parameter estimation method is improved from reducing the variance of parameter estimators.The L2 regularization term is introduced into the ordinary least square estimation and the optimal L2 regular term parameter is solved by the particle swarm algorithm.Finally,the novel model is applied to the forecast of China's three major staple grain yields.The results show that the novel model solves the problems in the parameter application and model structure of MGM(1,m,N)model in certain degree.The optimized model can effec-tively alleviate the influence of model's predictive performance by multicollinearity and improves the MGM(1,m,N)the model's predictive precision.

The MGM(1,m,N)modelmulticollinearityL2 regular termparticle swarm algorithm

熊萍萍、武彧睿、檀成伟、童伟杰、杨凯茵

展开 >

南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044

南京信息工程大学管理工程学院,风险治理与应急决策研究院,南京 210044

南京信息工程大学数学与统计学院,南京 210044

南京信息工程大学雷丁学院,南京 210044

展开 >

MGM(1,m,N)模型 多重共线性 L2正则项 粒子群算法

国家社会科学基金

23BGL232

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(4)
  • 21