首页|基于多项式抽象的神经网络控制系统的障碍函数构造

基于多项式抽象的神经网络控制系统的障碍函数构造

扫码查看
针对神经网络控制系统的安全性验证,提出了基于多项式抽象的障碍函数构造方法.首先,采用全局扇区约束方法、局部扇区约束方法和区域叠加约束方法等对神经网络模型进行抽象,从而得到了相应的半代数约束;然后,运用计算实代数几何中的正点定理,将障碍函数条件松弛为相应的平方和约束条件,再采用半定规划方法进行求解.最后,通过实例对上述不同的神经网络抽象方法就神经网络控制系统的障碍函数构造能力的影响进行了分析.
Construction of Barrier Certificates for Neural Network Controlled Systems Based on Polynomial Abstraction
This paper discusses a polynomial-based barrier certificate construction method for verifying the safety of neural network controlled systems.First,the neural network model is abstracted using methods such as global sector constraints,local sec-tor constraints,and overlay sector constraints to obtain corresponding semi-algebraic constraints.Then,using Positivstellenstz in computational real algebraic geometry,the barrier certificate conditions are transformed into corresponding sum-of-squares constraints,which are solved by using semi-definite programming.Finally,the effects of the above different neural network abstraction methods on the ability of construct-ing the barrier certificates of the neural network controlled systems are analyzed and compared through examples.

Neural network controlled systembarrier certificate constructionpoly-nomial abstractionsum-of-squares programming

黄程、林望

展开 >

浙江理工大学计算机科学与技术学院,杭州 310018

神经网络控制系统 障碍函数构造 多项式抽象 平方和规划

国家自然科学基金

62272416

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(5)
  • 21