首页|带零点的非负系数Bernstein展开

带零点的非负系数Bernstein展开

扫码查看
一个熟知的结论是说,如果多项式f ∈ R[x]在单位方体In=[0,1]n上的值是严格正的,则f可以用带正系数的Bernstein基表示.但是,当f在单位方体In上存在零点时,上述结论不再成立.文章研究了 f带有角零点(单位方体的顶点)的情况,找到了在仅有角零点的假设下f存在非负系数的Bernstein展开需要满足的充分必要条件.文章通过引入d-多重型,将问题转化为d-多重型的系数问题.
Bernstein Expansion with Non-Negative Coefficients and Corner Zeros
It is well known that if a polynomial f ∈ R[x]is strictly positive on the unit box In=[0,1]n,then f can be written as a Bernstein expansion with strictly positive coefficients.However,the above conclusion no longer holds if f has zero points on In.In this paper,we consider the case of f with corner zero points(vertices of In).As a result,we provide a necessary and sufficient condition for the Bernstein expansion of f with non-negative coefficients when the zeros are only at corner of In.Our method relies on constructing the d-multiple form whose terms are homogeneous,the problem is transformed into the verification of coefficients of a given d-multiple form.

Bernstein expansionpolynomials with non-negative coefficientsd-multiple form

徐嘉、姚勇、秦小林

展开 >

西南民族大学数学学院,成都 610041

中国科学院成都计算机应用研究所,成都 610213

Bernstein展开 非负系数多项式 d-多重型

中央高校一般项目四川省科技计划四川省科技计划

2020NYB402019ZDZX00062020YFQ0056

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(5)
  • 18