首页|基于用户评论"主题-情感"耦合分析的MOOC质量表征研究

基于用户评论"主题-情感"耦合分析的MOOC质量表征研究

扫码查看
MOOC评论文本蕴含大量用户观点和情感信息,反应来自用户视角的MOOC质量诉求和质量满意度.文章构建了基于用户评论"主题-情感"耦合分析的MOOC质量表征模型,即基于LDA挖掘评论文本主题,表征MOOC的质量评估维度;基于BERT生成评论文本情感分类,表征MOOC质量的满意度和关注度,并以"中国大学MOOC"为例分析MOOC质量的表征结果.研究发现,不同学科类型的MOOC质量评估维度不同,不同MOOC在每个质量评估维度上的用户满意度和关注度不同,质量评估维度对MOOC质量有不同的显著性影响.文章提出的MOOC质量表征模型能泛化到具有用户评论的各种在线课程平台,能细粒度表征课程质量,为建设者设计和改进课程、学习者选择课程提供精准依据,服务优化MOOC建设和体验.
MOOC Quality Characterization Using the"Theme-Emotion"Coupled Analysis on User Comments
MOOC comments contain a wealth of user opinions and emotional infor-mation,reflecting the quality demands and satisfaction from the user's perspective.This study constructs a model for the quality characterization of MOOC based on the"Theme-Emotion"coupled analysis of user comments.Specifically,it utilizes LDA to extract thematic information from comment texts,representing dimensions for as-sessing MOOC quality.Furthermore,it employs BERT for emotion classification to characterize user satisfaction and attention towards MOOC quality.The study takes"Chinese University MOOC"as an example to analyze the MOOC quality charac-terization results.The findings reveal that the quality assessment dimensions vary in MOOCs of different subject areas,user satisfaction and attention towards each dimen-sion differ for different MOOCs,and the quality assessment dimensions have varying significant impacts on MOOC quality.The proposed MOOC quality characterization model can be generalized to various online course platforms with user comments,offering a fine-grained representation of course quality.This model provides precise criteria for builders to design and improve courses and for learners to select courses,contributing to the optimization of MOOC development and user experience.

User commentsMOOC qualityquality characterization modelsenti-ment analysistheme mining

刘迎春、章震

展开 >

浙江工业大学教育科学与技术学院,杭州 310023

用户评论 MOOC质量 质量表征模型 情感分析 主题挖掘

国家自然科学基金面上项目

62077043

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(5)
  • 37