首页|向量优化问题的最优性条件与全对偶之研究

向量优化问题的最优性条件与全对偶之研究

扫码查看
利用向量函数的次微分性质,引入新的弱性约束规范条件,等价刻画了向量优化问题的KKT类最优性条件.然后,利用共轭映射的性质,定义了该问题的Largrange、Fenchel-Largrange和Toland-Fenchel-Lagrange对偶问题,建立了向量优化问题与三类对偶问题之间的全对偶和稳定全对偶定理,推广和改进了前人的相关结论.
Optimality Conditions and Total Dualities for Vector Optimization Problems
In this paper,by using the properties of subdifferential of vector func-tions,we introduce some new weaker constraint qualifications.By using those con-straint qualifications,optimality conditions for the vector optimization problem are established.Moreover,by using the properties of conjugate map,we define the La-grange,Fenchel-Lagrange and Total-Fenchel-Lagrange type dual problems for the vector optimization problem.Under these constraint qualifications,the total duality and the stable total duality between vector optimization problem and its three types of dual problems are established.Our results extend the corresponding results in the previous papers.

Vector optimization problemconstraint qualificationoptimality con-ditiontotal duality

郑晴慧、王仙云、方东辉

展开 >

吉首大学数学与统计学院,吉首 416000

向量优化问题 约束规范条件 最优性条件 全对偶

国家自然科学基金国家自然科学基金湖南省自然科学基金湖南省教育厅科研项目

12261037118610332024JJ7396CX20221112

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(6)
  • 22