首页|面向云制造服务优选的全排列EDAS模型

面向云制造服务优选的全排列EDAS模型

扫码查看
如何从众多候选云制造服务中优选出令用户满意的服务,是云制造高效开展的关键.针对云制造服务优选评价信息所具有的不确定性,云制造需求者的风险规避心理,以及其评价整体系统具有的系统倍增效应,提出了一种犹豫模糊全排列EDAS模型,以实现其准确优选.该模型在EDAS框架下,通过犹豫模糊集表征完整的分歧意见,将体现极端情形的正、负理想解引入EDAS模型求解,构造出能刻画风险规避心理的指标优劣评价测度,并利用指标全排列面式聚合体现指标系统倍增效应.最后将其应用于解决云南省云内动力集团的云制造服务优选问题,以验证所提方法的贴切性与优越性.
Full-Arranged EDAS Model for Cloud Manufacturing Service Optimization
How to select services that satisfy users from among many candidate cloud manufacturing services is the key to the efficient development of cloud man-ufacturing.Aiming at the uncertainty of cloud manufacturing service optimization evaluation information,the risk aversion psychology of cloud manufacturing deman-ders,and the system multiplier effect of their overall evaluation system,a hesitant fuzzy full array EDAS model is proposed to achieve accurate optimization.Under the framework of EDAS,this model represents completely divergent opinions through hesitant fuzzy sets,introduces positive and negative ideal solutions that reflect ex-treme situations into the EDAS model for solution,constructs an indicator quality evaluation measure that can characterize risk aversion psychology,and utilizes a full array of indicators to aggregate to reflect the multiplier effect of the indicator system.Finally,it is applied to solve the cloud manufacturing service optimization problem of Yunnan Yunnei Power Group to verify the appropriateness and superiority of the proposed method.

Cloud manufacturing servicesEDAStotal arrangement polymeriza-tionhesitant fuzzy set

彭定洪、李旭锋、李杰

展开 >

昆明理工大学管理与经济学院,昆明 650093

昆明理工大学质量发展研究院,昆明 650093

云制造服务 EDAS 全排列聚合 犹豫模糊集

国家自然科学基金资助项目国家自然科学基金资助项目云南省基础研究计划项目云南省哲学社会科学规划项目

7226102071861018202201AT070190YB2019067

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(7)
  • 29