首页|基于拉普拉斯分布的半参非对称联合可导出风险模型研究

基于拉普拉斯分布的半参非对称联合可导出风险模型研究

扫码查看
近年来,由于半参联合可导出风险模型在风险价值(VaR)和预期损失(ES)的联合统计建模与预测方面的优越表现,其已在金融计量领域引发了广泛关注.文章首次从非对称拉普拉斯分布的视角出发,研究了一类基于该分布的半参非对称联合可导出风险模型的统计性质与风险预测表现.与已有的半参联合可导出风险模型不同的是,该模型假设资产收益的条件分布服从基于VaR和ES的非对称拉普拉斯分布,考虑了金融市场的典型非对称特征,将VaR和ES看作是由包含非对称特征的收益率条件标准差过程与待估参数所组成的动态结构,实现了 VaR与ES的联合统计建模.基于该模型结构,给出了其拟极大似然估计方法,并在一定正则条件下建立了该估计的一致性与渐近正态性定理.随后,多种情况下的数值模拟结果证实了该估计的有限样本性质以及该模型在预测样本外向前一步风险的有效性.最后,实证研究显示所提模型在预测向前多步VaR与ES上的表现最优.
Research on Semiparametric Asymmetric Joint Elicitable Risk Model Based on the Laplace Distribution
In recent years,due to the superior performance of semiparametric joint elicitable risk models in joint statistical modeling and prediction of value at risk(VaR)and expected shortfall(ES),they have attracted widespread attention in the field of financial measurement.This paper first studies the statistical properties and risk prediction performance of the model under the framework of the asymmetric Laplace distribution.Unlike the existing semiparametric joint elicitable risk models,this model jointly models VaR and ES by assuming the conditional distribution of asset returns follows the asymmetric Laplace distribution based on VaR and ES,taking into account the typical asymmetric characteristic of financial markets,and regarding VaR and ES as dynamic structures composed of conditional standard deviation process of returns containing the asymmetric feature and a parameter to be estimated.Based on the structure of the model,we discuss the quasi-maximum likelihood estimation method and establish the consistency and asymptotic normality theorems for the estimator under certain regular conditions.Subsequently,numerical simulation results considering various conditions confirm the finite sample properties of the estimator and the effectiveness on predicting one-step ahead risks.Finally,empirical results show that the proposed model performs best in predicting multi-step ahead VaR and ES.

Value at riskexpected shortfallsemiparametric asymmetric joint elic-itable risk modelasymmetric Laplace distributionasymptotic property

吴志敏、蔡光辉

展开 >

浙江大学数学科学学院,杭州 310058

浙大城市学院统计系,杭州 310015

浙江工商大学统计与数学学院,杭州 310018

风险价值 预期损失 半参非对称联合可导出风险模型 非对称拉普拉斯分布 渐近性质

国家社会科学基金

19BTJ013

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(10)