首页|贝叶斯空间中分布型符号数据时间序列建模研究

贝叶斯空间中分布型符号数据时间序列建模研究

扫码查看
面向分布型符号数据线性运算不封闭的问题,文章基于贝叶斯空间代数提出了分布型符号数据时间序列模型.在符号数据分析的框架下,分布型符号数据又被称为数值模态数据,其数据单元可以是直方图、经验分布或带经验估计的参数分布.由于符号数据表的元素是带约束的概率密度函数、累积分布函数或者分位数函数,经典的函数运算并不适用.与以往的研究不同,文章的研究工作基于贝叶斯空间代数,其运算定义充分考虑了概率密度函数的具体特征,线性运算封闭,并且在其内积定义下概率密度函数空间构成一个完备的内积空间,代数性质优良.为了提出一种简洁的分布型符号时序模型,文章首先基于贝叶斯空间的线性运算和内积运算定义了分布型符号数据的数字特征、差分算子和后移算子,然后推导了分布型符号数据自回归模型、移动平均模型、自回归移动平均模型和差分自回归移动平均模型的模型识别和参数估计方法,并给出完整的建模方案.最后,通过两组仿真实验和一个真实案例说明了所提方法的有效性.
Time Series Models for Distributional Data in Bayes Space
To solve the problem of non-closed linear operations in distributional data,this paper proposes time series models for distributional data in Bayes space.Under the framework of symbolic data analysis,distributional data are known as numerical modal data whose realizations can be histograms,empirical distributions or empirical estimates of parametric distributions.Since the elements of the data table are probability density functions,cumulative distribution functions or quantile functions which carry information with constraints,standard methods are not appro-priate for their statistical processing.In this paper,the specific features of density functions are accounted for in Bayes space whose linear operations are closed,and the space of density functions form a complete inner product space with good alge-braic properties.To build up a concise methodology for distributional time series,numeric characteristics of distributional time series,the difference operator and the lag operator are first defined by linear operations and inner products of probability density functions in Bayes space.Furthermore,the methods for model specification and parameter estimation of the distributional AR model,MA model,ARMA model and the distributional ARIMA model are deduced with a complete modelling scheme.Finally,two series of simulation experiments and a real data analysis demonstrate the usefulness and effectiveness of the proposed methods for distributional time series.

Symbolic datadistributional dataBayes spacetime series

陈梅玲、俞翰君

展开 >

华北科技学院理学院,廊坊 065201

首都经济贸易大学统计学院,北京 100070

符号数据 分布型数据 贝叶斯空间 时间序列

国家自然科学基金项目北京市自然科学基金项目中央引导地方科技发展资金项目首都经济贸易大学青年学术创新团队建设项目

718011629224032246Z4701GQNTD202207

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(10)