首页|不确定Markov跳变系统随机零和博弈及H∞控制

不确定Markov跳变系统随机零和博弈及H∞控制

扫码查看
考虑扰动的存在会使模型参数和转移概率无法精确获悉的不确定情形,文章研究不确定离散Markov跳变系统零和博弈问题.首先,借助自由连接权矩阵,推导出该系统在不施加控制策略时稳定的充分条件;其次,以稳定性判据为基础,结合松弛不等式和配方法,给出了e-次优鞍点均衡存在的充分性判据、均衡策略的显式表达和性能指标的精确上界;而后,应用零和博弈理论,解决了不确定Markov跳变随机系统H∞控制问题.最后,以经济系统为算例进行数值仿真,验证研究结果的有效性和实用性.
Stochastic Zero-Sum Game and H∞ Control of Uncertain Markov Jump Systems
Considering the uncertain situation that the presence of perturbations makes the model parameters and transfer probabilities not known precisely,this paper investigates the zero-sum game problem of uncertain discrete Markov jump system.By using the method of free-connection weighting matrix,the existence conditions of control strategy and the expression of the upper bound of performance index are proposed.Firstly,with the help of the free connection weight matrix,we derive the sufficient condition for the stability of the system when no control strategy is imposed.Secondly,based on the stability criterion,combined with the relaxation inequality and the collocation method,we give the sufficiency criterion for the existence of the suboptimal saddle-point equilibrium,an explicit expression of equilibrium strategy,and a precise upper bound on the performance index.Then,by applying the theory of zero-sum game,we solve the zero-sum game problem of the uncertain stochastic Markov jump system.And stochastic H∞ control are provided as an immediate application.Finally,numerical simulation is carried out with the economic system as an example to verify the validity and practicability of the research results.

e-suboptimal saddle equilibriumuncertain system parametersgener-ally bounded transition probabilitiesH∞ control

曹铭、徐萌、张成科、朱怀念

展开 >

广东金融学院经济贸易学院,广州 510521

广东工业大学管理学院,广州 510520

广东工业大学经济学院,广州 510520

ε-次优鞍点均衡 不确定系统参数 转移概率一般有界 H∞控制

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(12)