首页|混频数据有序多分类模型及应用

混频数据有序多分类模型及应用

扫码查看
在有序多分类分析中,混频数据观测越来越普遍.为了解决大频率倍差下的有序多分类问题,文章将混频数据采样(MIDAS)技术与有序Logit(OLogit)模型相结合,构建MIDAS-OLogit模型.MIDAS-OLogit模型运用高频解释变量来预测低频的有序多分类结果,扩大了OLogit模型的应用范围,能够适应大频率倍差下混频数据有序多分类分析.为了验证其有效性,文章进行Monte Carlo数值模拟,结果表明MIDAS-OLogit模型的预测性能优于竞争模型.此外,文章运用MIDAS-OLogit模型,对2008-2021年中国上市公司发行的公司债进行信用评级,结果进一步验证了其分类预测与实时预报的优越表现.
An MIDAS-OLogit Model with Applications
In ordered multi-classification analysis,mixed data observation is be-coming more and more common.In order to solve the problem of ordered multi-classification under a large frequency ratio,we combine the mixed data sampling(MIDAS)with ordered Logit(OLogit)model to construct an MIDAS-OLogit model.The MIDAS-OLogit model uses high-frequency explanatory variables to predict the ordered multi-classification results of the low-frequency variable,which expands the application range of OLogit model and can adapt to the ordered multi-classification analysis of mixed data under large frequency ratio.In order to verify its effective-ness,Monte Carlo numerical simulation is carried out,and the results show that the prediction performance of MIDAS-OLogit model is better than that of competitive models.In addition,we use the MIDAS-OLogit model to credit ratings the corporate bonds issued by Chinese listed companies from 2008 to 2021,and the results further verify its superior performance of classified forecasting and real-time forecasting.

Ordered multi-classificationOLogit modelmixed dataMIDAS-OLogit modelcredit ratings

蒋翠侠、聂玉冰、许启发

展开 >

合肥工业大学管理学院,合肥 230009

合肥工业大学过程优化与智能决策教育部重点实验室,合肥 230009

有序多分类 有序Logit模型 混频数据 MIDAS-OLogit模型 信用评价

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(12)