首页|区块链系统中的挖矿激励与报酬分析

区块链系统中的挖矿激励与报酬分析

扫码查看
矿工的积极挖矿行为是维护区块链系统安全稳定运行的基础,也是实现区块链生态可持续发展的保障.因此,如何对矿工的挖矿行为进行有效的经济激励具有重要的理论意义和现实意义.针对该问题,文章以PoW(Proof of Work)共识机制下的区块链排队系统为研究对象,通过构建GI/M/1型连续时间马氏报酬过程,计算了矿工长期平均利润的表达式,并给出了矿工挖矿实现长期盈利的充分条件;进一步,基于该马氏报酬过程,利用RG-分解计算了矿工短期累计利润的期望和方差,以评估矿工短期的收益和风险.文章的研究方法与结果为研究区块链系统的挖矿激励提供了一个重要的发展方向,也为区块链技术应用中的一些经济管理问题提供了新的思路与数学分析途径.
Mining Incentive and Reward Analysis in Blockchain Systems
Active mining behaviour of miners is fundamental to maintaining the se-cure and stable operation of blockchain systems,as well as realising the sustainable development of blockchain ecosystem.Therefore,effectively incentivizing the mining behaviour of the miners is of significant theoretical and practical importance.In this paper,we focus on investigating a PoW(Proof of Work)blockchain queueing system.By establishing a continuous-time Markov reward process of the GI/M/1 type,we compute the expression for the miners'long-run average profit and provide a suffi-cient condition for their profitability.In addition,to evaluate the miners'short-run benefits and risks,we utilize RG-factorization based on the Markov reward process to obtain expectations and variances of the short-run accumulated profits.We hope that the methodology and results derived in this paper can shed light on the study of mining incentives in blockchain systems,while also provide novel ideas and mathemat-ical analysis approaches for economics and management issues related to blockchain technology.

Blockchainmining incentivequeueing theoryMarkov reward processRG-factorization

马静宇、李泉林

展开 >

徐州工程学院商学院,徐州 221018

北京工业大学经济与管理学院,北京 100124

区块链 挖矿激励 排队论 马氏报酬过程 RG-分解

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(12)