首页|基于FNO方法的整数阶和分数阶DNLS方程的数据驱动解研究

基于FNO方法的整数阶和分数阶DNLS方程的数据驱动解研究

扫码查看
文章首次将傅里叶神经算子(FNO)应用于整数阶导数非线性薛定谔(DNLS)方程和分数阶导数非线性薛定谔(fDNLS)方程.对于DNLS方程,成功建立了方程初始条件与相应解之间的映射关系.不仅研究了孤子向M型波的转变过程,并且得到了周期解的变化过程.同时,采用FNO方法研究了周期背景下怪波的转化过程.对于fDNLS方程,FNO方法被应用于学习方程的分数阶指数空间与孤子空间之间的算子映射.通过将数据驱动的解与精确解进行比较,凸显了FNO网络强大的逼近能力.最后,文章还讨论了全连接P层和激活函数对网络表征能力的影响.
Data-Driven Solutions for the Integer and Fractional Order Derivative Nonlinear Schr?dinger Equation via Fourier Neural Operator Approach
In this paper,we utilize the Fourier neural operator(FNO)for the first time to investigate the derivative nonlinear Schrödinger(DNLS)equation and frac-tional derivative nonlinear Schrödinger(fDNLS)equation.For the DNLS equation,we successfully establish the mappings between the initial conditions of the equation and their respective solutions.The transition process of the soliton to the M-type wave is studied,and the periodic solution is also obtained.Simultaneously,the FNO learning method is employed to investigate the transformation process of the period-ical rogue wave.Moreover,we focus on learning the mapping between the fractional order exponential space and the soliton in the fDNLS equation.By comparing the data-driven solution with the exact solution,the powerful approximation capability of the FNO network is highlighted.Finally,we discuss the effects of the full-connected layer P and the activation function on the characterization ability of the network.

Derivative nonlinear Schrödinger equationdata-driven solutionFourier neural operatorfractional partial differential equation

任宏梅、田守富、钟鸣、刘记川

展开 >

中国矿业大学数学学院,徐州 221116

中国科学院数学与系统科学研究院数学机械化重点实验室,北京 100190

中国科学院大学数学科学学院,北京 100049

导数非线性薛定谔方程 数据驱动的解 傅里叶神经算子 分数阶偏微分方程

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(12)