首页|两类线性码的hull维数

两类线性码的hull维数

扫码查看
计算线性码的hull维数,对确定有限域上一些算法的复杂度和构造纠缠辅助量子纠错码有重要意义.文章研究有限域F2上(a+x,b+x,a+b+x)构造和F3上(u+v+w,2u+v,u)构造得到的线性码的hull维数,构造了渐进好的自正交码和线性互补对偶码,得到了具有明确hull维数的最优或几乎最优线性码和自正交码.
Dimensions of Hull of Two Classes of Linear Codes
Calculating the dimensions of hull of linear codes is significant for deter-mining the complexity of some algorithms over finite fields and constructing entangle-ment-assisted quantum error-correcting codes.In this paper,the dimension of the hull of a linear code derived from the(a+x,b+x,a+b+x)-construction over F2 and the(u+v+w,2u+v,u)-construction over F3 are studied.The asymptotics of the families of self-orthogonal codes and linear complementary dual codes obtained from these two constructions are determined.Some optimal or almost optimal linear codes with an explicit hull dimension and self-orthogonal codes are obtained.

Linear codeshullself-orthogonal codeslinear complementary dual(LCD)codesasymptotic

黄炎、开晓山

展开 >

江西职业技术大学信息工程学院,九江 332000

合肥工业大学数学学院,合肥 230601

线性码 hull 自正交码 LCD码 渐近性

2024

系统科学与数学
中国科学院数学与系统科学研究院

系统科学与数学

CSTPCD北大核心
影响因子:0.425
ISSN:1000-0577
年,卷(期):2024.44(12)