首页|基于IGWO-SVM的带钢表面缺陷分类研究

基于IGWO-SVM的带钢表面缺陷分类研究

扫码查看
为了提升带钢表面缺陷分类准确率,提出了一种基于IGWO-SVM的带钢图像分类方法.首先引入混沌序列、精英反向学习策略和动态非线性收敛因子来设计改进灰狼优化算法,利用改进灰狼算法优化支持向量机的参数,然后使用优化后的支持向量机对带钢表面缺陷图片进行分类.文章使用了 6 个基准函数和带钢表面缺陷图片进行仿真实验,实验结果表明,改进灰狼算法拥有更高的精度和收敛性,改进灰狼算法优化支持向量机分类能够有效提升分类准确率.
The Research on Surface Defect Classification of Strip Steel Based on IGWO-SVM
To improve the accuracy of surface defect classification for strip steel,a strip steel image classification method based on IGWO-SVM is proposed.The paper first introduced chaotic sequences,elite opposition-based learning strategy,and dynamic nonlinear convergence factor to design the Improved Gray Wolf Optimization Algorithm(IGWO).IGWO is used to optimize the parameters of the Support Vector Machine(SVM),and then the optimized SVM is used to classify surface defect images of steel strips.The paper used 6 benchmark functions and surface defect images of strip steel for simulation experiments.The experimental results showed that IGWO has higher accuracy and convergence,and optimized support vector machine classification with IGWO can effectively improve classification accuracy.

improved gray wolf optimization algorithmsupport vector machinedefect classificationelite opposition-based learning

徐晓莹、郗君甫

展开 >

河北科技工程职业技术大学,河北 邢台 054035

改进灰狼优化算法 支持向量机 带钢表面缺陷分类 精英反向学习

邢台市重点研发计划自筹项目

2023ZC001

2024

邢台职业技术学院学报
邢台职业技术学院

邢台职业技术学院学报

影响因子:0.319
ISSN:1008-6129
年,卷(期):2024.41(3)