首页|基于Mixup训练及多模型决策融合的腰椎间盘突出诊断

基于Mixup训练及多模型决策融合的腰椎间盘突出诊断

Diagnosis of Lumbar Disc Herniation Based on Mixup Training and Decision Fusion of Multiple Models

扫码查看
医疗多中心数据集的分布是存在差异的,由单一中心数据集训练的模型泛化性往往不佳,导致训练好的模型在应用时受到很大的限制.Mixup训练方法能够有效提升模型泛化性,基于Dempster-Shafer证据理论(Dempster-Shafer Evidence Theory,DST)的模型融合方法能够有效融合多个模型的最佳决策.因此,针对单一中心训练的医疗模型泛化性较差的问题,通过Mixup训练增强模型的泛化性能,并采用多模型决策融合的方式获得最佳决策结果,提出了一个针对腰椎间盘突出诊断的有效模型.经过外部测试集测试,该方法获得了88.22%的分类准确率、88.12%的F1分数和87.69%的AUC值.
The distribution of multi-center medical datasets is different,and the generalization of the model trained by single-center datasets is often poor,resulting in great limitations in application.Mixup training can effectively improve the generalization of the model,and the model fusion method based on Dempster-Shafer evidence theory(DST)can effectively fuse the best decision of multiple mod-els.Therefore,we propose an effective model for the diagnosis of lumbar disc herniation in response to the poor generalization of medical models trained by single-center datasets.The generalization of the model is enhanced by Mixup training,and the best decision is obtained by the method of multi-model decision fusion based on DST.After testing on the external test set,the method obtains 88.22%classifi-cation accuracy,88.12%F1 score and AUC value of 87.69%.

lumbar magnetic resonance imaginglumbar disc herniationMixupmulti-model fu-sion decision

李英、陈健、苏志海、海金金、闫镔

展开 >

信息工程大学,河南 郑州 450001

中山大学附属第五医院脊柱外科,广东 珠海 519000

腰椎核磁影像 腰椎间盘突出诊断 Mixup 多模型决策融合

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(3)
  • 2