首页|基于PINN的Burgers方程求解模型

基于PINN的Burgers方程求解模型

Solution Model of Burgers Equation Based on PINN

扫码查看
传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题.针对此问题,物理信息神经网络(Physical In-formation Neural Networks,PINNs)关注了训练数据中隐含的物理先验知识,融合了神经网络拟合复杂变量的能力,赋予了传统神经网络所缺乏的物理可解释性.应用该算法模型,提出了一种基于PINN的Burgers方程求解模型,该算法模型在训练中施加物理信息约束,因此能用少量的训练样本学习预测到分布在时空域上的偏微分方程模型.实验结果表明,在1+1维Burgers方程算例下,所提方法相比于经典的机器学习算法能有效捕抓到方程的变化并进行精确模拟,相比于有限差分法,可以大幅度缩短模拟时间.通过对不同的网络参数进行比较实验,所提方法在10%的噪声破坏下能产生合理的识别准确度,网络逼近方程的待定系数误差在0.001以内.
The traditional numerical solution methods face the problems of dimension disaster and effi-ciency and accuracy balance,while the neural network solution method based on data-driven has the problems of training redundancy and inexplicability.To solve this problem,physical information neural networks(PINNs)pay attention to the physical prior knowledge implied in the training data,integrate the ability of neural networks to fit complex variables,and endow the traditional neural networks with the physical interpretability that is lacking.By applying the algorithm model,a solution model of Burg-ers equation based on PINN is proposed.The algorithm model imposes physical information con-straints during training,so it can use a small number of training samples to learn and predict the par-tial differential equation model distributed in the space-time domain.The experimental results show that in the case of 1+1 dimensional Burgers equation,compared with the classical machine learning al-gorithm,the proposed method can effectively catch the changes of the equation and simulate accu-rately,and can significantly shorten the simulation time compared with the finite difference method.Through comparative experiments on different network parameters,even under 10%noise damage,it can produce reasonable recognition accuracy,and the undetermined coefficient error of network ap-proximation equation is within 0.001.

computational fluid dynamicsdeep learningphysical information neural networkburg-

骆炜杰、李芳、陈鑫

展开 >

信息工程大学,河南 郑州 450001

国家并行计算机工程技术研究中心,北京 100190

计算流体力学 深度学习 物理信息神经网络 Burgers方程

国家重点研发计划

2020YFB0204800

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(3)
  • 1