首页|利用神经网络预测的空气质量态势可视分析方法

利用神经网络预测的空气质量态势可视分析方法

Visual Analysis of Air Quality Situation Using Neural Network Prediction

扫码查看
当前空气质量预测结果难以从时空多维展示分析结合深度学习与大数据分析技术,提出一种基于神经网络预测的空气质量变化态势多维表达的交互式可视分析方法.首先,提出多层二维卷积与长短时记忆神经网络模型(2D-CNN+LSTM),用于提取空气质量时空特征进行空气质量指数(AQI)预测;其次,从实际需求出发,设计空气质量态势多维表达可视化视图与交互方法;最后,构建可视分析系统,利用大气污染数据集进行案例研究与分析.实验结果表明,该方法能通过时序可视化、空间可视化及属性关联可视化等多视图协同交互,实现空气质量态势时空多维表达与分析,为空气质量防范治理问题提供新思路与方法.
At present,it is a challenge to present and analyz air quality prediction results from spatio-temporal perspective.Therefore,combining deep learning and big data analysis techniques,an interac-tive visual analysis method is proposed for multidimensional representation of air quality change dy-namics based on neural network prediction.Firstly,a multilayer two dimensional convolutional neural networks and long short-term memory neural network model(2D-CNN+LSTM)is proposed for extract-ing air quality spatio-temporal features for Air Quality Index(AQI)prediction.Secondly,from the prac-tical requirements,a visualization view and interaction method is designed for multidimensional repre-sentation of air quality situation information.Finally,a visual analysis system is constructed to utilize the air pollution dataset for case studies and analysis.The experimental results show that it can realize the spatial and temporal multidimensional expression and analysis of air quality situation through the synergistic interaction of multiple views such as time-series visualization,spatial visualization and at-tribute association visualization.It provides new ideas and methods for air quality prevention and man-agement problems.

air quality predictionspatio-temporal situation analysisair qualityvisual analysisneural network

叶林、陈晓慧、刘海砚、张然、刘涛

展开 >

信息工程大学,河南 郑州 450001

空气质量预测 时空态势分析 空气质量 可视分析 神经网络

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(4)
  • 9