首页|光学遥感图像语义描述的深度学习方法

光学遥感图像语义描述的深度学习方法

Deep Learning Methods for Semantic Description of Optical Remote Sensing Images

扫码查看
遥感图像语义描述是解释或注释遥感图像中地物对象和场景的类型、状态和特征的跨模态任务,深化了对遥感图像的解读和理解,成为遥感领域研究的热点.首先,从研究现状使用不同技术的角度出发,主要介绍基于像素和基于目标两种方法下的遥感图像语义描述工作.其次,根据解码器的不同,这两种方法进一步细分为CNN-RNN方法和CNN-Transformer方法.尽管遥感图像描述研究已有明显进展,但面对复杂的背景干扰、尺度多变、目标模糊、类间相似等挑战,仍需克服诸多难题.未来,遥感图像语义描述研究需专注于图像视觉信息的利用、特征增强和集成大型模型等方面的创新,以提升模型的鲁棒性和准确性.
Semantic description of remote sensing images is a cross-modal task to explain or annotate the types,states and features of ground objects and scenes in remote sensing images.It deepens the in-terpretation and understanding of remote sensing images,and becomes a research hotspot in the field of remote sensing.Firstly,from the perspectives of different technologies used in the current research situation,the semantic description work of remote sensing images under the pixel-based and target-based methods is mainly reviewed.Secondly,these two methods are further subdivided into CNN-RNN method and CNN-Transformer method according to different decoders.Although the research on re-mote sensing image description has made remarkable progress,many problems still need to be over-come in the face of complex background interference,variable scale,fuzzy target and similarity be-tween classes.In the future,the research of remote sensing image semantic description should focus on the use of image visual information,feature enhancement and integration of large-scale models to im-prove the robustness and accuracy of models.

encoderdecoderremote sensing imagedeep learningattention mechanism

李远丽、刘伟、李润生、牛朝阳、李芳润、卢万杰

展开 >

信息工程大学,河南 郑州 450001

编码器 解码器 遥感图像 深度学习 注意力机制

国家自然科学基金福建省自然资源科技创新项目

42201472KY-080000-04-2021-030

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(5)
  • 4