首页|基于XGBoost模型的多尺度武装冲突风险预测——以巴基斯坦为例

基于XGBoost模型的多尺度武装冲突风险预测——以巴基斯坦为例

Multi-scale Armed Conflict Risk Prediction Based on XGBoost Model:A Case Study of Pakistan

扫码查看
全球范围内的武装冲突已经成为国际社会不容忽视的焦点,如何结合多源地理空间数据研究,从更加精细的空间尺度上预测冲突爆发风险是亟需解决的问题.以巴基斯坦为例,提出一种基于XGBoost的多尺度武装冲突预测模型.首先,构建多尺度网格对数据进行划分,经时空栅格化处理后作为预测模型的主题数据集;其次,基于数据集构建地理环境、经济社会、时间推移、空间扩张、时空依赖和全要素等6个主题子模型;最后,结合不平衡样本处理和贝叶斯自动寻优,对武装冲突爆发的风险等级进行划分和预测.基于XGBoost的多尺度网格的预测可以实现更精细的空间划分,准确捕捉冲突爆发的地点和分布模式.模型可应用于不同层级,为制定不同地区的冲突风险政策提供参考.
Armed conflicts on a global scale have become the focus of the international community,and how to combine multi-source geospatial data research to predict the risk of conflict outbreak from a more refined spatial scale is a problem that needs to be solved.Taking Pakistan as an example,a multi-scale armed conflict prediction model based on XGBoost is proposed.Firstly,a multi-scale grid is con-structed to divide the data,which is used as the thematic dataset of the prediction model after spatio-temporal rasterization.And then 6 thematic sub-models are constructed based on the dataset for geogra-phy,economy and society,time lapse,spatial expansion,spatio-temporal dependence and total ele-ments.Finally,the risk level of the outbreak of armed conflict is classified and predicted by combining the unbalanced sample processing and Bayesian auto-optimization.The XGBoost-based multiscale armed conflict prediction model can achieve finer spatial delineation and accurately capture the loca-tions and distribution patterns of conflict outbreaks.The model can be applied at different levels to pro-vide a reference for the formulation of conflict risk policies in different regions.

armed conflictrisk predictionXGBoost algorithmmulti-scale gridPakistan

王彩璇、郭黎、张婉晨、马式纪、白翔天

展开 >

信息工程大学,河南 郑州 450001

武装冲突 风险预测 XGBoost算法 多尺度网格 巴基斯坦

河南省高等教育教学改革研究与实践重点项目国家重点研发计划

2021SJGLX2992021YFB3900900

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(5)
  • 3