首页|基于喷泉码的隐私保护编码计算卸载方法

基于喷泉码的隐私保护编码计算卸载方法

Privacy-Preserving Coding Computation Offloading Method Based on Fountain Codes

扫码查看
隐私保护编码计算研究未考虑节点之间的异构性及时变性,导致计算效率下降.针对此问题,提出一种基于喷泉码的隐私保护编码计算卸载方法.首先,为隐私分布式矩阵乘法运算设计多项式喷泉码编码器,该编码器支持持续输出任务直至成功解码,具有灵活的码率且能够适应不稳定的网络条件.其次,分析节点运行的时序特征,给出3种任务分配模式,从而丰富对评估分配策略的理解.最后,引入动态任务分发方法,为充分考虑节点的异构性将更多任务分配给性能更强的节点,并基于反馈自适应调节分配策略以适应系统的时变性.仿真结果验证了该方法的有效性,同时确保了信息论上的隐私保护.
The prevailing research on privacy-preserving coded computation neglects the heterogeneity and time-varying nature of edge network,leading to compromised computational efficiency.To address this gap,a method for privacy-preserving coding computation offloading based on fountain codes is in-troduced.Firstly,a polynomial-fountain code encoder tailored for privacy-preserving distributed matrix multiplication is designed.This encoder supports ongoing task outputs until successful decoding,offer-ing an adaptive coding rate adept at accommodating fluctuating network conditions.Secondly,the tem-poral attributes of node computation is analyzed,and three distinct task allocation models are pro-posed,which enriches the understanding of allocation strategy performance.Finally,a dynamic task distribution method is subsequently presented,emphasizing node heterogeneity by allocating a larger share of tasks to high-performance nodes.This method adaptively fine-tunes the allocation strategy based on feedback,catering to the evolving system dynamics.Simulation outcomes validate the effi-cacy of this method,concurrently ensuring rigorous privacy protection as per information theory stan-dards.

multi-access edge computingcoded computationdistributed computationcomputation offloadingprivacy protection

郭中孚、季新生、游伟、赵宇、巩小锐

展开 >

信息工程大学,河南 郑州 450001

紫金山实验室,江苏 南京 211111

边缘计算 编码计算 分布式计算 计算卸载 隐私保护

国家重点研发计划国家重点研发计划

2022YFB29022042020YFB1806607

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(5)
  • 1