首页|开集场景下基于多重高斯残差原型网络的辐射源个体识别

开集场景下基于多重高斯残差原型网络的辐射源个体识别

Specific Emitter Identification Based on Multiple Gaussian Residual Prototype Network in Open-Set Scenario

扫码查看
为解决开集场景下未知辐射源的个体识别算法鲁棒性较低、识别性能不高的问题,结合残差网络和多重高斯原型学习基本思想,提出多重高斯残差原型网络,对信号的灰度矢量图进行识别.通过生成约束,同一类别的潜在特征会紧密聚集在与之对应的高斯原型周围,增加未知类样本的存储空间;判别约束则是将不同类别的高斯原型分离开来,增加不同类别高斯原型之间的距离,提高对已知类别的分类判别能力.实验结果表明,所提算法在相同信噪比条件下相较于其他算法具有更好的识别性能,尤其是在开集场景下,其AUC值较对比算法分别提升0.207和0.221,进一步表明所提网络模型具有较好的识别分类能力.
To address the issues of low robustness and recognition performance in individual recogni-tion algorithms for unknown emitter sources within open-set scenarios,a multiple Gaussian residual prototype network is proposed.This network recognizes grayscale grophs of signals by integrating the fundamental concepts of residual networks with multiple Gaussian prototype learning.Constraints are generated to ensure that potential features of the same class cluster tightly around their respective Gaussian prototypes,thereby expanding the storage capacity for unknown class samples.Additionally,discriminant constraints are applied to increase the separation between Gaussian prototypes of differ-ent classes,enhancing the classification and discrimination capabilities of known classes.Experiments involving seven types of radiation sources demonstrate that the proposed algorithm outperforms other algorithms in terms of recognition performance under the same signal-to-noise ratio(SNR)conditions.Notably,in open-set scenarios,it achieves an AUC value that is respectively 0.207 and 0.221 higher than those of the compared algorithm,highlighting its superior recognition and classification abilities.

specific emitter identificationopen-set scenariomultiple Gaussian residual prototype networkvector graphics

王艳云、牛朝阳、李远丽、李芳润、湛嘉祺

展开 >

信息工程大学,河南 郑州 450001

辐射源个体识别 开集场景 多重高斯残差原型网络 矢量图

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(6)