首页|一维卷积神经网络和Transformer在加密流量分类上的应用

一维卷积神经网络和Transformer在加密流量分类上的应用

Application of One-Dimensional Convolutional Neural Network and Transformer in Encrypted Traffic Classification

扫码查看
针对加密流量识别准确率和模型效率不高的问题,提出一种融合Transformer的一维卷积神经网络(1D-CNN)模型.首先,结合卷积神经网络在序列数据分析中的卓越性能和Trans-former对序列数据关系的强大表示能力,通过两个一维卷积神经网络深入挖掘加密流量数据中的局部特征.其次,并行使用Transformer神经网络的嵌入编码与位置编码策略,将复杂的数据特征转化为语义向量.再次,利用多头注意力机制进一步增强模型捕获序列间深层次依赖关系的能力,实现对加密数据中全局特征的高效提取.最后,通过全连接层融合输出,使用分类器实现对加密流量属性识别.该方法在ISCX 2016 VPN-nonVPN数据集上进行验证,实验结果表明,该模型准确率达到了96.7%,在加密流量分类任务上表现出较大的性能提升.
To address the low accuracy in encrypted traffic recognition and inefficiency in model per-formance,a novel one-dimensional convolutional neural network(1D-CNN)model integrated with Transformer technology is proposed.Firstly,the superior performance of convolutional neural networks in sequence data analysis is combined with the powerful representational capabilities of Transformers for sequence relationships.Local features in encrypted traffic data are deeply mined by employing two one-dimensional convolutional neural networks.Secondly,Transformer neural network embedding and position encoding strategies are simultaneously used,and complex data features are transformed into semantic vectors.Thirdly,multi-head attention mechanisms are utilized to further enhance its capabil-ity to capture deep inter-sequence dependencies,and global features are efficiently extracted from en-crypted data.Finally,the fusion of these features occurs in a fully connected layer,followed by the use of a classifier for the recognition of encrypted traffic attributes.It is validated on the ISCX 2016 VPN-nonVPN dataset.Experimental results demonstrate that this model achieves an accuracy of 96.7%,in-dicating a significant performance improvement in the task of encrypted traffic classification.

deep learningencrypted traffic classificationone-dimensional convolutional neural net-workmulti-head attention mechanismintegrated model

柴源聪、李玎

展开 >

信息工程大学,河南 郑州 450001

深度学习 加密流量分类 一维卷积神经网络 多头注意力机制 融合模型

2024

信息工程大学学报
中国人民解放军信息工程大学科研部

信息工程大学学报

影响因子:0.276
ISSN:1671-0673
年,卷(期):2024.25(6)