首页|混凝土碱-硅酸反应膨胀率预测模型修正研究

混凝土碱-硅酸反应膨胀率预测模型修正研究

扫码查看
为建立准确、可行的混凝土棱柱体法碱-硅酸反应膨胀率预测模型,基于幂函数模型、双曲线函数模型、复合指数函数模型预测值与实测值偏差情况,分别采用拟合回归方法确定引入模型的修正参数,进而实现对幂函数、双曲线函数模型的修正,评价了修正方法的准确性和可行性.结果表明:通过2组混凝土配合比180 d龄期膨胀率拟合回归分析,复合指数函数模型预测值与实测值相符性好;修正后幂函数、双曲线函数模型的拟合回归相关系数得到提高,模型所用修正方法具有一定的准确性和可行性;幂函数修正模型整体上符合程度优于其它模型,因此采用预测模型时建议优先采用幂函数修正模型.
Research on the correction of the prediction model for the expansion rate of concrete alkali-silica reaction
To establish an accurate and feasible prediction model for the Alkali-silica Reaction expansion rate of concrete prisms,a fitting regression method was used to determine the correction parameters of the introduced model based on the deviation between the predicted values and the measured values of the power function model,hyperbolic function model,and composite index model.The power function model and hyperbolic function model were then corrected,and the accuracy and feasibility of the correction method were ultimately evaluated.The research results indicate that through regression analysis of the 180 d age expansion rate of two sets of concrete mix proportions,the composite exponential function model has better consistency between the predicted expansion rate values and the measured values compared to the power function model and the hyperbolic function model.The fitted regression correlation coefficients of the corrected power function model and hyperbolic function model have been improved.The model correction method used has a certain degree of accuracy and feasibility.The overall compliance of the power function correction model is better than the other model,so it is recommended to prioritize using the power function correction model when using prediction models.

concrete alkali-silica reactionconcrete prism methodmodel modificationfitting regression method

赵阳、戈兵、李树利、张建平、孙俊、孙飞

展开 >

中国建筑科学研究院有限公司,北京 100013

北京市住房和城乡建设科学技术研究所,北京 101117

建研院检测中心有限公司,北京 100013

国家建筑工程技术研究中心,北京 100013

展开 >

混凝土碱-硅酸反应 混凝土棱柱体法 模型修正 拟合回归方法

中国建筑科学研究院有限公司青年基金项目

20220112331030031

2024

新型建筑材料
中国新型建筑材料工业杭州设计研究院

新型建筑材料

CSTPCD
影响因子:0.569
ISSN:1001-702X
年,卷(期):2024.51(6)