首页|Si/TiO2 carbon fiber core encapsulated in hierarchical multiple MXene@Co-MoS2 shells for constructing a free-standing anode of lithium storage

Si/TiO2 carbon fiber core encapsulated in hierarchical multiple MXene@Co-MoS2 shells for constructing a free-standing anode of lithium storage

扫码查看
Silicon-based(Si-based)materials offer more possibilities for generating new portable electronic devices due to their high specific capacities.However,their inferior electrical conductivity and volume expansion during cycling seriously limit their development.The optimum solution is to select specific materials to establish an exceptionally conductive and volume buffer structure,which can assist Si materials in developing their excellent lithium storage properties.In this study,Si particles were confined in TiO2 carbon fibers(TiO2 CFs)via electro-spinning,after which they were encapsulated with MXene and Co-MoS2(CMS)nanosheets to fabricate hierarchical ST-2@MXene@CMS films.TiO2 CF,MXene and CMS were employed to establish a coherent conductive network with one-,two-and three-dimensional electronic pathways to permit the unimpeded flow of electrons inside the electrode material.TiO2 CF,MXene and CMS acted pre-cisely as multilayered buffers to ameliorate the volume change of Si particles during cycling.In addition,the CMS nanosheets were involved in lithium storage,contributing to the final electrochemical performance.Ultimately,the ST-2@MXene@CMS films served as free-standing elec-trodes,avoiding the impact of inactive interfaces on the electrochemical performance and fulfilling the lightweight requirement for new energy storage devices.

Si particlesMXeneCo-MoS2 nanosheetsHierarchical structureLithium-ion batteries

Xian-ping Du、Ying Huang、Jia-ming Wang、Zhen-he Feng、Xu Sun

展开 >

MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions,School of Chemistry and Chemical Engineering,Northwestern Polytechnical University,Xi'an 710072,China

Shanghai Institute of Space Power-Sources,Shanghai 200245,China

Ningbo Institute of Northwestern Polytechnical University,Ningbo 315103,China

Shanghai Aerospace Science and Technology Innovation Foundation

SAST2020-105

2024

稀有金属(英文版)
中国有色金属学会

稀有金属(英文版)

CSTPCDEI
影响因子:0.801
ISSN:1001-0521
年,卷(期):2024.43(9)
  • 2