首页|基于深度学习的智慧家居移动端人脸识别系统设计

基于深度学习的智慧家居移动端人脸识别系统设计

扫码查看
为了进一步提升智慧家居移动端中人脸识别系统的检测精度,本文提出了一种基于卷积神经网络的多任务深度学习算法。通过卷积神经网络提取人脸图像中的多层次特征,捕捉并区分人脸的局部差异,完成人脸图像采集和预处理,构建MTCNN模型,获得人脸框及关键点坐标;并通过联合损失函数优化多个任务,实现任务间信息的互补与增强,通过任务间的相互制约提升单一任务的识别准确率;然后,结合多任务学习框架有效增强模型的泛化性能。实验结果表明:本算法对图像进行统一处理后,系统的人脸识别召回率超过98。3%,识别准确率高达95。6%,显著优于现有系统。
Design of Facial Recognition System for Smart Home Mobile Based on Deep Learning
In order to improve the detection accuracy of face recognition system in smart home mobile,a multi-task deep learn-ing algorithm based on convolutional neural network is proposed in this paper.Through convolutional neural network,multi-level features in face images are extracted,and the local differences of faces are captured and distinguished.The face images are collected and preprocessed,and the MTCNN model is constructed to obtain the frame and the coordinates of key points.The joint loss function is used to optimize the multi-task,which can complement and enhance the information among the tasks and improve the recognition accuracy of the single task.Then,the generalization performance of the model is effectively enhanced by combining the multi-task learning framework.The experimental results show that the recall rate is over 98.3%and the recognition accuracy is up to 95.6%,which is significantly better than the existing system.

deep learningsmart homemobile terminalfacial recognition

罗丹、赵莉

展开 >

信阳农林学院信息工程学院,河南信阳 464000

深度学习 智慧家居 移动端 人脸识别

河南省重点研发与推广专项(科技攻关)项目校级课程思政教学团队项目校级教育教学改革研究项目

232102210146Kcszjxtd-2022-082024XJGGJ144

2024

信阳农林学院学报
信阳农业高等专科学校

信阳农林学院学报

影响因子:0.167
ISSN:2095-8978
年,卷(期):2024.34(2)
  • 5