首页|C-Bézier基函数在稳态线弹性方程求解中的应用

C-Bézier基函数在稳态线弹性方程求解中的应用

扫码查看
用有限元方法求解稳态线弹性方程,以C-Bézier基函数作为参考元上的形函数,通过选取适当的形状参数,在步长不变的情况下,所得到的数值解精度比传统的Lagrange基函数在Lf、L2 范数下高3个数量级以上,在H1 半范数下高2~6个数量级,充分说明了C-Bézier基函数在求解稳态线弹性方程时具有更好的逼近效果.
Application of C-Bézier Basis Function in Solving Steady Linear Elasticity Equations
The finite element method was used to deal with the steady linear elasticity equations,and the C-Bézier basis function was used as the shape function on the reference element of the elasticity equations.By selecting the appropriate shape parameters,the accuracy of the numerical solution was three orders of magnitude higher than that of the traditional Lagrange basis in Lf、L2 norm and 2~6 orders of magnitude higher in H1semi-norm.It sufficiently showed that C-Bézier basis has better approximation effect in simulating steady linear elasticity equations.

steady linear elasticity equationsfinite element methodC-Bézier basis functions

孙兰银、庞琨琨

展开 >

信阳师范大学 数学与统计学院,河南 信阳 464000

稳态线弹性方程 有限元方法 C-Bézier基函数

国家自然科学基金河南省高等学校科技创新人才支持计划河南省重点研发与推广专项(科技攻关计划)

1180149022HASTIT021212102210394

2024

信阳师范学院学报(自然科学版)
信阳师范学院

信阳师范学院学报(自然科学版)

CSTPCD
影响因子:0.446
ISSN:1003-0972
年,卷(期):2024.37(2)
  • 20